Skip to main content
Log in

Cardiotrophin-1 in hypertensive heart disease

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Hypertensive heart disease, here defined by the presence of pathologic left ventricular hypertrophy in the absence of a cause other than arterial hypertension, is characterized by complex changes in myocardial structure including enhanced cardiomyocyte growth and non-cardiomyocyte alterations that induce the remodeling of the myocardium, and ultimately, deteriorate left ventricular function and facilitate the development of heart failure. It is now accepted that a number of pathological processes mediated by mechanical, neurohormonal, and cytokine routes acting on the cardiomyocyte and the non-cardiomyocyte compartments are responsible for myocardial remodeling in the context of arterial hypertension. For instance, cardiotrophin-1 is a cytokine member of the interleukin-6 superfamily, produced by cardiomyocytes and non-cardiomyocytes in situations of biomechanical stress that once secreted interacts with its receptor, the heterodimer formed by gp130 and gp90 (also known as leukemia inhibitory factor receptor beta), activating different signaling pathways leading to cardiomyocyte hypertrophy, as well as myocardial fibrosis. Beyond its potential mechanistic contribution to the development of hypertensive heart disease, cardiotrophin-1 offers the opportunity for a new translational approach to this condition. In fact, recent evidence suggests that cardiotrophin-1 may serve as both a biomarker of left ventricular hypertrophy and dysfunction in hypertensive patients, and a potential target for therapies aimed to prevent and treat hypertensive heart disease beyond blood pressure control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Fischer, D. Hilfiker-Kleiner, Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res. Cardiol. 102, 279–297 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. J. Pan, K. Fukuda, M. Saito, J. Matsuzaki, H. Kodama, M. Sano, T. Takahashi, T. Kato, S. Ogawa, Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ. Res. 84, 1127–1136 (1999)

    Article  PubMed  CAS  Google Scholar 

  3. C.J. Pemberton, S.D. Raudsepp, T.G. Yandle, V.A. Cameron, A.M. Richards, Plasma cardiotrophin-1 is elevated in human hypertension and stimulated by ventricular stretch. Cardiovasc. Res. 68, 109–117 (2005)

    Article  PubMed  CAS  Google Scholar 

  4. J. Fukuzawa, G.W. Booz, R.A. Hunt, N. Shimizu, V. Karoor, K.M. Baker, D.E. Dostal, Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3: an autocrine loop for hypertrophy. Hypertension 35, 1191–1196 (2000)

    Article  PubMed  CAS  Google Scholar 

  5. N. López-Andrés, C. Iñigo, I. Gallego, J. Díez, M. Fortuño, Aldosterone induces cardiotrophin-1 expression in HL-1 adult cardiomyocytes. Endocrinology 149, 4970–4978 (2008)

    Article  PubMed  Google Scholar 

  6. M. Funamoto, S. Hishinuma, Y. Fujio, Y. Matsuda, K. Kunisada, H. Oh, S. Negoro, E. Tone, T. Kishimoto, K. Yamauchi-Takihara, Isolation and characterization of the murine cardiotrophin-1 gene: expression and norepinephrine-induced transcriptional activation. J. Mol. Cell. Cardiol. 32, 1275–1284 (2000)

    Article  PubMed  CAS  Google Scholar 

  7. S. Janjua, K.M. Lawrence, L.L. Ng, D.S. Latchman, The cardioprotective agent urocortin induces expression of CT-1. Cardiovasc. Toxicol. 3, 255–262 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. Z.S. Jiang, M. Jeyaraman, G.B. Wen, R.R. Fandrich, I.M. Dixon, P.A. Cattini, E. Kardami, High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J. Mol. Cell. Cardiol. 42, 222–233 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. J. Liu, Z. Liu, F. Huang, Z. Xing, H. Wang, Z. Li, Pioglitazone inhibits hypertrophy induced by high glucose and insulin in cultured neonatal rat cardiomyocytes. Pharmazie 62, 925–929 (2007)

    PubMed  CAS  Google Scholar 

  10. S. Hishinuma, M. Funamoto, Y. Fujio, K. Kunisada, K. Yamauchi-Takihara, Hypoxic stress induces cardiotrophin-1 expression incardiac myocytes. Biochem. Biophys. Res. Commun. 264, 436–440 (1999)

    Article  PubMed  CAS  Google Scholar 

  11. P.A. Robador, G. San José, C. Rodríguez, A. Guadall, M.U. Moreno, J. Beaumont, A. Fortuño, J. Díez, J. Martínez-González, G. Zalba, HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia. Cardiovasc. Res. 92, 247–255 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. M. Kurdi, G.W. Booz, Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J. Cardiovasc. Pharmacol. 50, 126–141 (2007)

    Article  PubMed  CAS  Google Scholar 

  13. P. Calabrò, G. Limongelli, L. Riegler, V. Maddaloni, R. Palmieri, E. Golia, T. Roselli, D. Masarone, G. Pacileo, P. Golino, R. Calabrò, Novel insights into the role of cardiotrophin-1 in cardiovascular diseases. J. Mol. Cell. Cardiol. 46, 142–148 (2009)

    Article  PubMed  Google Scholar 

  14. Z. Sheng, D. Pennica, W.I. Wood, K.R. Chien, Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 122, 419–428 (1996)

    PubMed  CAS  Google Scholar 

  15. A. Stephanou, B. Brar, R. Heads, R.D. Knight, M.S. Marber, D. Pennica, D.S. Latchman, Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac cells and protects them from stressful stimuli. J. Mol. Cell. Cardiol. 30, 849–855 (1998)

    Article  PubMed  CAS  Google Scholar 

  16. J.C. Liu, M. He, L. Wan, X.S. Cheng, Heat shock protein 70 gene transfection protects rat myocardium cell against anoxia-reoxygeneration injury. Chin. Med. J. (Engl) 120, 578–583 (2007)

    CAS  Google Scholar 

  17. J.D. Jiao, V. Garg, B. Yang, K. Hu, Novel functional role of heat shock protein 90 in ATP-sensitive K+ channel-mediated hypoxic preconditioning. Cardiovasc. Res. 77, 126–133 (2008)

    Article  PubMed  CAS  Google Scholar 

  18. D.S. Latchman, Heat shock proteins and cardiac protection. Cardiovasc. Res. 51, 637–646 (2001)

    Article  PubMed  CAS  Google Scholar 

  19. B.K. Brar, A. Stephanou, Z. Liao, R.M. O’Leary, D. Pennica, D.M. Yellon, D.S. Latchman, Cardiotrophin-1 can protect cardiac myocytes from injury when added both prior to simulated ischaemia and at reoxygenation. Cardiovasc. Res. 51, 265–274 (2001)

    Article  PubMed  CAS  Google Scholar 

  20. Z. Liao, B.K. Brar, Q. Cai, A. Stephanou, R.M. O’Leary, D. Pennica, D.M. Yellon, D.S. Latchman, Cardiotrophin-1 (CT-1) can protect the adult heart from injury when added both prior to ischaemia and at reperfusion. Cardiovasc. Res. 53, 902–910 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. N. López, J. Díez, M.A. Fortuño, Characterization of the protective effects of cardiotrophin-1 against non-ischemic death stimuli in adult cardiomyocytes. Cytokine 30, 282–292 (2005)

    Article  PubMed  Google Scholar 

  22. D. Pennica, K.L. King, K.J. Shaw, E. Luis, J. Rullamas, S.M. Luoh, W.C. Darbonnei, D.S. Knutzon, R. Yent, K.R. Chien, J.B. Barker, W.I. Wood, Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc. Natl. Acad. Sci. USA 92, 1142–1146 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. K.C. Wollert, T. Taga, M. Saito, M. Narazaki, T. Kishimoto, C.C. Glembotski, A.B. Vernallis, J.K. Heath, D. Pennica, W.I. Wood, K.R. Chien, Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-dependent pathways. J. Biol. Chem. 271, 9535–9545 (1996)

    Article  PubMed  CAS  Google Scholar 

  24. N. López, J. Díez, M.A. Fortuño, Differential hypertrophic effects of cardiotrophin-1 on adult cardiomyocytes from normotensive and spontaneously hypertensive rats. J. Mol. Cell. Cardiol. 41, 902–913 (2006)

    Article  PubMed  Google Scholar 

  25. N. López, N. Varo, J. Díez, M.A. Fortuño, Loss of myocardial LIF receptor in experimental heart failure reduces cardiotrophin-1 cytoprotection A role for neurohumoral agonists? Cardiovasc. Res. 75, 536–545 (2007)

    Article  PubMed  Google Scholar 

  26. O. Zolk, S. Engma, F. Münzel, R. Krajcik, Chronic cardiotrophin-1 stimulation impairs contractile function in reconstituted heart tissue. Am. J. Physiol. Endocrinol. Metab. 288, E1214–E1221 (2005)

    Article  PubMed  CAS  Google Scholar 

  27. A. González, S. Ravassa, I. Loperena, B. López, J. Beaumont, R. Querejeta, M. Larman, J. Díez, Association of depressed cardiac gp130-mediated antiapoptotic pathways with stimulated cardiomyocyte apoptosis in hypertensive patients with heart failure. J. Hypertens. 25, 2148–2157 (2007)

    Article  PubMed  Google Scholar 

  28. T. Tsuruda, M. Jougasaki, G. Boerrigter, B.K. Huntley, H.H. Chen, A.B. D’Assoro, S.C. Lee, A.M. Larsen, A. Cataliotti, J.C. Burnett Jr, Cardiotrophin-1 stimulation of cardiac fibroblast growth: roles for glycoprotein 130/leukemia inhibitory factor receptor and the endothelin type A receptor. Circ. Res. 90, 128–134 (2002)

    Article  PubMed  CAS  Google Scholar 

  29. D.H. Freed, A.M. Borowiec, T. Angelovska, I.M. Dixon, Induction of protein synthesis in cardiac fibroblasts by cardiotrophin-1: integration of multiple signalling pathways. Cardiovasc. Res. 60, 365–375 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. D.H. Freed, R.H. Cunnington, A.L. Dangerfield, J.S. Sutton, I.M. Dixon, Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc. Res. 65, 782–792 (2005)

    Article  PubMed  CAS  Google Scholar 

  31. N. López-Andrés, B. Martin-Fernandez, P. Rossignol, F. Zannad, V. Lahera, M.A. Fortuño, V. Cachofeiro, J. Díez, A role for cardiotrophin-1 in myocardial remodeling induced by aldosterone. Am. J. Physiol. Heart Circ. Physiol. 301, H2372–H3782 (2011)

    Article  PubMed  Google Scholar 

  32. D.H. Freed, L. Chilton, Y. Li, A.L. Dangerfield, J.E. Raizman, S.G. Rattan, N. Visen, L.V. Hryshko, I.M. Dixon, Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblasts cell migration. Am. J. Physiol. Heart Circ. Physiol. 301, H514–H522 (2011)

    Article  PubMed  CAS  Google Scholar 

  33. J. Díez, A. González, B. López, R. Querejeta, Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nature Clin. Pract. Cardiovasc. Med. 2, 209–216 (2005)

    Article  Google Scholar 

  34. M. Ishikawa, Y. Saito, Y. Miyamoto, K. Kuwahara, E. Ogawa, O. Nakagawa, M. Harada, I. Masuda, K. Nakao, cDNA cloning of cardiotrophin-1 (CT-1): augmented expression of CT-1 gene in ventricle of genetically hypertensive rats. Biochem. Biophys. Res. Commun. 219, 377–381 (1996)

    Article  PubMed  CAS  Google Scholar 

  35. M. Ishikawa, Y. Saito, Y. Miyamoto, M. Harada, K. Kuwahara, E. Ogawa, O. Nakagawa, I. Hamanaka, N. Kajiyama, N. Takahashi, I. Masuda, T. Hashimoto, O. Sakai, T. Hosoya, K. Nakao, A heart-specific increase in cardiotrophin-1 gene expression precedes the establishment of ventricular hypertrophy in genetically hypertensive rats. J. Hypertens. 17, 807–816 (1999)

    Article  PubMed  CAS  Google Scholar 

  36. M. Kurdi, J. Random, C. Ceruttim, G. Bricca, Increased expression of IL-6 and LIF in the hypertrophied left ventricle of TGR(mRen2)27 and SHR rats. Mol. Cell. Biochem. 269, 95–101 (2005)

    Article  PubMed  CAS  Google Scholar 

  37. H. Kanazawa, M. Ieda, K. Kimura, T. Arai, H. Kawaguchi-Manabe, T. Matsuhashi, J. Endo, M. Sano, T. Kawakami, T. Kimura, T. Monkawa, M. Hayashi, A. Iwanami, H. Okano, Y. Okada, H. Ishibashi-Ueda, S. Ogawa, K. Fukuda, Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J. Clin. Invest. 120, 408–421 (2010)

    Article  PubMed  CAS  Google Scholar 

  38. Y. Takimoto, T. Aoyama, Y. Iwanaga, T. Izumi, Y. Kihara, D. Pennica, S. Sasayama, Increased expression of cardiotrophin-1 during ventricular remodeling in hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 282, H896–H901 (2002)

    PubMed  CAS  Google Scholar 

  39. R. Toh, S. Kawashima, M. Kawai, T. Sakoda, T. Ueyama, S. Satomi-Kobayashi, S. Hirayama, M. Yokoyama, Transplantation of cardiotrophin-1-expressing myoblasts to the left ventricular wall alleviates the transition from compensatory hypertrophy to congestive heart failure in Dahl salt-sensitive hypertensive rats. J. Am. Coll. Cardiol. 43, 2337–2347 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. O. Zolk, L.L. Ng, R.J. O’Brien, M. Weyand, T. Eschenhagen, Augmented expression of cardiotrophin-1 in failing human hearts is accompanied by diminished glycoprotein 130 receptor protein abundance. Circulation 106, 1442–1446 (2002)

    Article  PubMed  CAS  Google Scholar 

  41. S. Asai, Y. Saito, K. Kuwahara, Y. Mizuno, M. Yoshimura, C. Higashikubo, T. Tsuji, I. Kishimoto, M. Harada, I. Hamanaka, N. Takahashi, H. Yasue, K. Nakao, The heart is a source of circulating cardiotrophin-1 in humans. Biochem. Biophys. Res. Commun. 279, 320–323 (2000)

    Article  PubMed  CAS  Google Scholar 

  42. B. López, A. González, J.J. Lasarte, P. Sarobe, F. Borrás, A. Díaz, J. Barba, L. Tomás, E. Lozano, M. Serrano, N. Varo, O. Beloqui, M.A. Fortuño, J. Díez, Is plasma cardiotrophin-1 a marker of hypertensive heart disease? J. Hypertens. 23, 625–632 (2005)

    Article  PubMed  Google Scholar 

  43. B. López, A. González, R. Querejeta, J. Barba, J. Díez, Association of plasma cardiotrophin-1 with stage C heart failure in hypertensive patients: potential diagnostic implications. J. Hypertens. 27, 418–424 (2009)

    Article  PubMed  Google Scholar 

  44. A. González, B. López, D. Martín-Raymondi, E. Lozano, N. Varo, J. Barba, M. Serrano, J. Díez, Usefulness of plasma cardiotrophin-1 in assessment of left ventricular hypertrophy regression in hypertensive patients. J. Hypertens. 23, 2297–2304 (2005)

    Article  PubMed  Google Scholar 

  45. G. Limongelli, P. Calabrò, V. Maddaloni, A. Russo, D. Masarone, A. D’Aponte, T. Roselli, R. Bonauro, R. D’Alessandro, A. D’Andrea, G. Pacileo, F.M. Limongelli, R. Calabrò, Cardiotrophin-1 and TNF-alpha circulating levels at rest and during cardiopulmonary exercise test in athletes and healthy individuals. Cytokine 50, 245–247 (2010)

    Article  PubMed  CAS  Google Scholar 

  46. P.A. Robador, M.U. Moreno, O. Beloqui, N. Varo, J. Redón, A. Fortuño, G. Zalba, J. Díez, Protective effect of the 1742(C/G) polymorphism of human cardiotrophin-1 against left ventricular hypertrophy in essential hypertension. J. Hypertens. 28, 2219–2226 (2010)

    Article  PubMed  CAS  Google Scholar 

  47. B. López, J.M. Castellano, A. González, J. Barba, J. Díez, Association of increased plasma cardiotrophin-1 with inappropriate left ventricular mass in essential hypertension. Hypertension 50, 977–983 (2007)

    Article  PubMed  Google Scholar 

  48. G. de Simone, R.B. Devereux, T.R. Kimball, G.F. Mureddu, M.J. Roman, F. Contaldo, G.F. Mureddu, M.J. Roman, F. Contaldo, S.R. Daniels, Interaction between body size and cardiac workload influence on left ventricular mass during body growth and adulthood. Hypertension 31, 1077–1082 (1998)

    Article  PubMed  Google Scholar 

  49. A. Celik, S. Sahin, F. Koc, M. Karayakali, M. Sahin, I. Benli, H. Kadi, T. Burucu, K. Ceyhan, U. Erkorkmaz, Cardiotrophin-1 plasma levels are increased in patients with diastolic heart failure. Med. Sci. Monit. 18, CR25–CR31 (2011)

    Google Scholar 

  50. T. Tsutamoto, S. Asai, T. Tanaka, i.H. Saka, K. Nishiyama, M. Fujii, T. Yamamoto, M. Ohnishi, A. Wada, Y. Saito, M. Horie, Plasma level of cardiotrophin-1 as a prognostic predictor in patients with chronic heart failure. Eur. J. Heart Fail. 9, 1032–1037 (2007)

    Article  PubMed  CAS  Google Scholar 

  51. L. Wu, L. Zhao, Q. Zheng, F. Shang, X. Wang, L. Wang, B. Lang, Simvastatin attenuates hypertrophic responses induced by cardiotrophin-1 via JAK-STAT pathway in cultured cardiomyocytes. Mol. Cell. Biochem. 284, 65–71 (2006)

    Article  PubMed  CAS  Google Scholar 

  52. J. Liu, Q. Shen, Y. Wu, Simvastatin prevents cardiac hypertrophy in vitro and in vivo via JAK/STAT pathway. Life Sci. 82, 991–996 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded through the agreement between the Foundation for Applied Medical Research (FIMA) and Unión Temporal de Empresas project Centro de Investigación Médica Aplicada (CIMA), the Instituto de Salud Carlos III, Ministry of Science and Innovation, Spain (RECAVA grant RD06/0014/0008, and grant PS09/02234), and the European Union (MEDIA project grant HEALTH-F2-2010-261409, and EU-MASCARA project grant FP7-HEALTH-2011-278249). Arantxa González is recipient of a Ramón y Cajal contract from the Ministry of Science and Innovation, Spain.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Díez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, A., López, B., Ravassa, S. et al. Cardiotrophin-1 in hypertensive heart disease. Endocrine 42, 9–17 (2012). https://doi.org/10.1007/s12020-012-9649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9649-4

Keywords

Navigation