Skip to main content
Log in

Use of Bone Turnover Markers in Osteoporosis

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone metabolism can be assessed by measuring bone turnover markers in serum or urine. Bone turnover markers are substances released from bone during bone turnover. They can be skeletal tissue proteins, collagen fragments, peptides, or enzymes released from bone cells. Bone turnover markers are extensively used in research applications but also as tools for the management of skeletal disorders in clinical practice. Osteoporosis-related applications may include assessment of response to, or deciding on osteoporosis therapy; identification of individuals with increased bone loss, and prediction of risk for fragility fractures. Advancements in the development of assays to measure bone markers has made the measurements available also for clinical practice. The possibility to use them in various aspects of clinical practice has been tested in the recent years and given promising results. Monitoring the efficacy of bone-active drugs is currently the most promising application for bone turnover markers. Some markers, particularly resorption markers may also be useful in identifying individuals who are at high risk for bone loss and future fracture. In this article we discuss some potential applications of currently available bone turnover markers in postmenopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective. How many women have osteoporosis? J Bone Miner Res. 1992;7(9):1005–10.

    PubMed  Google Scholar 

  2. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.

    Article  PubMed  CAS  Google Scholar 

  3. Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, et al. Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone. 2006;38(5):694–700.

    Article  PubMed  Google Scholar 

  4. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.

    Article  PubMed  CAS  Google Scholar 

  5. Seeman E. Osteocytes–martyrs for integrity of bone strength. Osteoporos Int. 2006;17(10):1443–8.

    Article  PubMed  CAS  Google Scholar 

  6. Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone. 2002;30(1):5–7.

    Article  PubMed  CAS  Google Scholar 

  7. Väänänen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys. 2008;473(2):132–8.

    Article  PubMed  CAS  Google Scholar 

  8. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93(2):799–808.

    Article  PubMed  CAS  Google Scholar 

  9. Ho AY, Kung AW. Determinants of peak bone mineral density and bone area in young women. J Bone Miner Metab. 2005;23(6):470–5.

    Article  PubMed  Google Scholar 

  10. Kanis JA, Adami S. Bone loss in the elderly. Osteoporos Int. 1994;4(Suppl 1):59–65.

    Article  PubMed  Google Scholar 

  11. Weiss MJ, Ray K, Henthorn PS, Lamb B, Kadesch T, Harris H. Structure of the human liver/bone/kidney alkaline phosphatase gene. J Biol Chem. 1988;263(24):12002–10.

    PubMed  CAS  Google Scholar 

  12. Garnero P, Delmas PD. Assessment of the serum levels of bone alkaline phosphatase with a new immunoradiometric assay in patients with metabolic bone disease. J Clin Endocrinol Metab. 1993;77(4):1046–53.

    Article  PubMed  CAS  Google Scholar 

  13. Hoang QQ, Sicheri F, Howard AJ, Yang DS. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature. 2003;425(6961):977–80.

    Article  PubMed  CAS  Google Scholar 

  14. Garnero P, Grimaux M, Seguin P, Delmas PD. Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res. 1994;9(2):255–64.

    PubMed  CAS  Google Scholar 

  15. Ivaska KK, Hentunen TA, Vääräniemi J, Ylipahkala H, Pettersson K, Väänänen HK. Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem. 2004;279(18):18361–9.

    Article  PubMed  CAS  Google Scholar 

  16. Price PA, Williamson MK, Lothringer JW. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem. 1981;256(24):12760–6.

    PubMed  CAS  Google Scholar 

  17. Ivaska KK, Hellman J, Likojärvi J, Käkönen SM, Gerdhem P, Åkesson K, et al. Identification of novel proteolytic forms of osteocalcin in human urine. Biochem Biophys Res Commun. 2003;306(4):973–80.

    Article  PubMed  CAS  Google Scholar 

  18. Srivastava AK, Mohan S, Singer FR, Baylink DJ. A urine midmolecule osteocalcin assay shows higher discriminatory power than a serum midmolecule osteocalcin assay during short-term alendronate treatment of osteoporotic patients. Bone. 2002;31(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ivaska KK, Käkönen SM, Gerdhem P, Obrant KJ, Pettersson K, Väänänen HK. Urinary osteocalcin as a marker of bone metabolism. Clin Chem. 2005;51(3):618–28.

    Article  PubMed  CAS  Google Scholar 

  20. Szulc P, Seeman E, Delmas PD. Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int. 2000;11(4):281–94.

    Article  PubMed  CAS  Google Scholar 

  21. Khosla S, Kleerekoper M. Biochemical markers of bone turnover. In: Favus MJ, editor. Primer on metabolic bone diseases and disorders of mineral metabolism. 5th ed. Washington DC: American Society of Bone and Mineral Research; 2003. p. 166–72.

    Google Scholar 

  22. Halleen JM, Raisanen S, Salo JJ, Reddy SV, Roodman GD, Hentunen TA, et al. Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem. 1999;274(33):22907–10.

    Article  PubMed  CAS  Google Scholar 

  23. Rissanen JP, Suominen MI, Peng Z, Halleen JM. Secreted tartrate-resistant acid phosphatase 5b is a Marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int. 2008;82(2):108–15.

    Article  PubMed  CAS  Google Scholar 

  24. Hannon RA, Clowes JA, Eagleton AC, Al Hadari A, Eastell R, Blumsohn A. Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone. 2004;34(1):187–94.

    Article  PubMed  CAS  Google Scholar 

  25. Halleen JM, Tiitinen SL, Ylipahkala H, Fagerlund KM, Väänänen HK. Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin Lab. 2006;52(9–10):499–509.

    PubMed  CAS  Google Scholar 

  26. Seibel MJ, Robins SP, Bilezikian JP. Urinary pyridinium crosslinks of collagen specific markers of bone resorption in metabolic bone disease. Trends Endocrinol Metab. 1992;3(7):263–70.

    Article  PubMed  CAS  Google Scholar 

  27. Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003;18(5):859–67.

    Article  PubMed  CAS  Google Scholar 

  28. Fledelius C, Johnsen AH, Cloos PA, Bonde M, Qvist P. Characterization of urinary degradation products derived from type I collagen. Identification of a beta-isomerized Asp-Gly sequence within the C-terminal telopeptide (alpha1) region. J Biol Chem. 1997;272(15):9755–63.

    Article  PubMed  CAS  Google Scholar 

  29. Kumm J, Ivaska KK, Rohtla K, Väänänen K, Tamm A. Urinary osteocalcin and other markers of bone metabolism: the effect of risedronate therapy. Scand J Clin Lab Invest. 2008;68(6):459–63.

    Article  PubMed  CAS  Google Scholar 

  30. Rosen HN, Moses AC, Garber J, Iloputaife ID, Ross DS, Lee SL, et al. Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int. 2000;66(2):100–3.

    Article  PubMed  CAS  Google Scholar 

  31. Sarioglu M, Tuzun C, Unlu Z, Tikiz C, Taneli F, Uyanik BS. Comparison of the effects of alendronate and risedronate on bone mineral density and bone turnover markers in postmenopausal osteoporosis. Rheumatol Int. 2006;26(3):195–200.

    Article  PubMed  CAS  Google Scholar 

  32. Rosen CJ, Hochberg MC, Bonnick SL, McClung M, Miller P, Broy S, et al. Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res. 2005;20(1):141–51.

    Article  PubMed  CAS  Google Scholar 

  33. Rizzoli R, Greenspan SL, Bone G 3rd, Schnitzer TJ, Watts NB, Adami S, et al. Two-year results of once-weekly administration of alendronate 70 mg for the treatment of postmenopausal osteoporosis. J Bone Miner Res. 2002;17(11):1988–96.

    Article  PubMed  CAS  Google Scholar 

  34. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Wang H, Liu Y, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab. 2008;93(6):2149–57.

    Article  PubMed  CAS  Google Scholar 

  35. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2009;24(1):153–61.

    Article  PubMed  CAS  Google Scholar 

  36. Bauer DC, Garnero P, Bilezikian JP, Greenspan SL, Ensrud KE, Rosen CJ, et al. Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2006;91(4):1370–5.

    Article  PubMed  CAS  Google Scholar 

  37. Kim SW, Park DJ, Park KS, Kim SY, Cho BY, Lee HK, et al. Early changes in biochemical markers of bone turnover predict bone mineral density response to antiresorptive therapy in Korean postmenopausal women with osteoporosis. Endocr J. 2005;52(6):667–74.

    Article  PubMed  CAS  Google Scholar 

  38. Nenonen A, Cheng S, Ivaska KK, Alatalo SL, Lehtimaki T, Schmidt-Gayk H, et al. Serum TRACP 5b is a useful marker for monitoring alendronate treatment: comparison with other markers of bone turnover. J Bone Miner Res. 2005;20(10):1804–12.

    Article  CAS  Google Scholar 

  39. McClung MR, Bolognese MA, Sedarati F, Recker RR, Miller PD. Efficacy and safety of monthly oral ibandronate in the prevention of postmenopausal bone loss. Bone. 2009;44(3):418–22.

    Article  PubMed  CAS  Google Scholar 

  40. Chesnut CH 3rd, Bell NH, Clark GS, Drinkwater BL, English SC, Johnson CC Jr, et al. Hormone replacement therapy in postmenopausal women: urinary N-telopeptide of type I collagen monitors therapeutic effect and predicts response of bone mineral density. Am J Med. 1997;102(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  41. Chen P, Satterwhite JH, Licata AA, Lewiecki EM, Sipos AA, Misurski DM, et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res. 2005;20(6):962–70.

    Article  PubMed  CAS  Google Scholar 

  42. Greenspan SL, Resnick NM, Parker RA. Early changes in biochemical markers of bone turnover are associated with long-term changes in bone mineral density in elderly women on alendronate, hormone replacement therapy, or combination therapy: a 3-year, double-blind, placebo-controlled, randomized clinical trial. J Clin Endocrinol Metab. 2005;90(5):2762–7.

    Article  PubMed  CAS  Google Scholar 

  43. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA. 1999;282(14):1344–52.

    Article  PubMed  CAS  Google Scholar 

  44. Delmas PD, Pornel B, Felsenberg D, Garnero P, Hardy P, Pilate C, et al. A dose-ranging trial of a matrix transdermal 17beta-estradiol for the prevention of bone loss in early postmenopausal women International Study Group. Bone. 1999;24(5):517–23.

    Article  PubMed  CAS  Google Scholar 

  45. McClung MR, Wasnich RD, Recker R, Cauley JA, Chesnut CH 3rd, Ensrud KE, et al. Oral daily ibandronate prevents bone loss in early postmenopausal women without osteoporosis. J Bone Miner Res. 2004;19(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  46. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res. 2003;18(6):1051–6.

    Article  PubMed  CAS  Google Scholar 

  47. Seibel MJ, Naganathan V, Barton I, Grauer A. Relationship between pretreatment bone resorption and vertebral fracture incidence in postmenopausal osteoporotic women treated with risedronate. J Bone Miner Res. 2004;19(2):323–9.

    Article  PubMed  CAS  Google Scholar 

  48. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    Article  PubMed  CAS  Google Scholar 

  49. Bauer DC, Black DM, Garnero P, Hochberg M, Ott S, Orloff J, et al. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J Bone Miner Res. 2004;19(8):1250–8.

    Article  PubMed  Google Scholar 

  50. Reginster JY, Sarkar S, Zegels B, Henrotin Y, Bruyere O, Agnusdei D, et al. Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk. Bone. 2004;34(2):344–51.

    Article  PubMed  CAS  Google Scholar 

  51. Gonnelli S, Cepollaro C, Pondrelli C, Martini S, Montagnani A, Monaco R, et al. Bone turnover and the response to alendronate treatment in postmenopausal osteoporosis. Calcif Tissue Int. 1999;65(5):359–64.

    Article  PubMed  CAS  Google Scholar 

  52. Bauer DC, Garnero P, Hochberg MC, Santora A, Delmas P, Ewing SK, et al. Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res. 2006;21(2):292–9.

    Article  PubMed  CAS  Google Scholar 

  53. Civitelli R, Gonnelli S, Zacchei F, Bigazzi S, Vattimo A, Avioli LV, et al. Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment. J Clin Invest. 1988;82(4):1268–74.

    Article  PubMed  CAS  Google Scholar 

  54. Gonnelli S, Cepollaro C, Pondrelli C, Martini S, Monaco R, Gennari C. The usefulness of bone turnover in predicting the response to transdermal estrogen therapy in postmenopausal osteoporosis. J Bone Miner Res. 1997;12(4):624–31.

    Article  PubMed  CAS  Google Scholar 

  55. Rosen CJ, Chesnut CH 3rd, Mallinak NJ. The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab. 1997;82(6):1904–10.

    Article  PubMed  CAS  Google Scholar 

  56. Sornay-Rendu E, Munoz F, Duboeuf F, Delmas PD. Rate of forearm bone loss is associated with an increased risk of fracture independently of bone mass in postmenopausal women: the OFELY Study. J Bone Miner Res. 2005;20(11):1929–35.

    Article  PubMed  Google Scholar 

  57. Bonnick SL, Johnston CC Jr, Kleerekoper M, Lindsay R, Miller P, Sherwood L, et al. Importance of precision in bone density measurements. J Clin Densitom. 2001;4(2):105–10.

    Article  PubMed  CAS  Google Scholar 

  58. Bauer DC, Sklarin PM, Stone KL, Black DM, Nevitt MC, Ensrud KE, et al. Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res. 1999;14(8):1404–10.

    Article  PubMed  CAS  Google Scholar 

  59. Cosman F, Nieves J, Wilkinson C, Schnering D, Shen V, Lindsay R. Bone density change and biochemical indices of skeletal turnover. Calcif Tissue Int. 1996;58(4):236–43.

    PubMed  CAS  Google Scholar 

  60. Lenora J, Ivaska KK, Obrant KJ, Gerdhem P. Prediction of bone loss using biochemical markers of bone turnover. Osteoporos Int. 2007;18(9):1297–305.

    Article  PubMed  CAS  Google Scholar 

  61. Iki M, Morita A, Ikeda Y, Sato Y, Akiba T, Matsumoto T, et al. Biochemical markers of bone turnover predict bone loss in perimenopausal women but not in postmenopausal women—the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int. 2006;17(7):1086–95.

    Article  PubMed  CAS  Google Scholar 

  62. Löfman O, Magnusson P, Toss G, Larsson L. Common biochemical markers of bone turnover predict future bone loss: a 5-year follow-up study. Clin Chim Acta. 2005;356(1–2):67–75.

    Article  PubMed  CAS  Google Scholar 

  63. Ross PD, Knowlton W. Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res. 1998;13(2):297–302.

    Article  PubMed  CAS  Google Scholar 

  64. Iki M, Morita A, Ikeda Y, Sato Y, Akiba T, Matsumoto T, et al. Biochemical markers of bone turnover may predict progression to osteoporosis in osteopenic women: the JPOS Cohort Study. J Bone Miner Metab. 2007;25(2):122–9.

    Article  PubMed  CAS  Google Scholar 

  65. Ivaska KK, Lenora J, Gerdhem P, Åkesson K, Väänänen HK, Obrant KJ. Serial assessment of serum bone metabolism markers identifies women with the highest rate of bone loss and osteoporosis risk. J Clin Endocrinol Metab. 2008;93(7):2622–32.

    Article  PubMed  CAS  Google Scholar 

  66. Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD. Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY Study. J Bone Miner Res. 1999;14(9):1614–21.

    Article  PubMed  CAS  Google Scholar 

  67. Dresner-Pollak R, Parker RA, Poku M, Thompson J, Seibel MJ, Greenspan SL. Biochemical markers of bone turnover reflect femoral bone loss in elderly women. Calcif Tissue Int. 1996;59(5):328–33.

    Article  PubMed  CAS  Google Scholar 

  68. Hoshino H, Kushida K, Takahashi M, Yamazaki K, Denda M, Atsumi K, et al. Changes in levels of biochemical markers and ultrasound indices of Os calcis across the menopausal transition. Osteoporos Int. 2000;11(2):128–33.

    Article  PubMed  CAS  Google Scholar 

  69. Lenora J, Gerdhem P, Obrant KJ, Ivaska KK. Bone turnover markers are correlated with quantitative ultrasound of the calcaneus: 5-year longitudinal data. Osteoporos Int. 2008. doi:10.1007/s00198-008-0769-x.

  70. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94.

    Article  PubMed  Google Scholar 

  71. Tromp AM, Ooms ME, Popp-Snijders C, Roos JC, Lips P. Predictors of fractures in elderly women. Osteoporos Int. 2000;11(2):134–40.

    Article  PubMed  CAS  Google Scholar 

  72. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res. 2004;19(3):386–93.

    Article  PubMed  CAS  Google Scholar 

  73. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD. Serum type I collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS study. Bone. 2000;27(2):283–6.

    Article  PubMed  CAS  Google Scholar 

  74. Ross PD, Kress BC, Parson RE, Wasnich RD, Armour KA, Mizrahi IA. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int. 2000;11(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  75. Åkesson K, Ljunghall S, Jonsson B, Sernbo I, Johnell O, Gärdsell P, et al. Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: a retrospective and prospective population-based study of women. J Bone Miner Res. 1995;10(11):1823–9.

    PubMed  Google Scholar 

  76. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res. 2000;15(8):1526–36.

    Article  PubMed  CAS  Google Scholar 

  77. Garnero P, Cloos P, Sornay-Rendu E, Qvist P, Delmas PD. Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res. 2002;17(5):826–33.

    Article  PubMed  CAS  Google Scholar 

  78. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996;11(10):1531–8.

    Article  PubMed  CAS  Google Scholar 

  79. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD. Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res. 2005;20(10):1813–9.

    Article  PubMed  Google Scholar 

  80. Luukinen H, Käkönen SM, Pettersson K, Koski K, Laippala P, Lövgren T, et al. Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res. 2000;15(12):2473–8.

    Article  PubMed  CAS  Google Scholar 

  81. Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a 3 year follow-up study. Bone. 1996;18(5):487–8.

    Article  PubMed  CAS  Google Scholar 

  82. Bruyere O, Collette J, Delmas P, Rouillon A, Roux C, Seidel L, et al. Interest of biochemical markers of bone turnover for long-term prediction of new vertebral fracture in postmenopausal osteoporotic women. Maturitas. 2003;44(4):259–65.

    Article  PubMed  CAS  Google Scholar 

  83. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA. Bone resorption and osteoporotic fractures in elderly men: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res. 2005;20(4):579–87.

    Article  PubMed  Google Scholar 

  84. Szulc P, Montella A, Delmas PD. High bone turnover is associated with accelerated bone loss but not with increased fracture risk in men aged 50 and over: the prospective MINOS study. Ann Rheum Dis. 2008;67(9):1249–55.

    Article  PubMed  CAS  Google Scholar 

  85. Ingle BM, Hay SM, Bottjer HM, Eastell R. Changes in bone mass and bone turnover following ankle fracture. Osteoporos Int. 1999;10(5):408–15.

    Article  PubMed  CAS  Google Scholar 

  86. Ingle BM, Hay SM, Bottjer HM, Eastell R. Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int. 1999;10(5):399–407.

    Article  PubMed  CAS  Google Scholar 

  87. Ivaska KK, Gerdhem P, Åkesson K, Garnero P, Obrant KJ. Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res. 2007;22(8):1155–64.

    Article  PubMed  CAS  Google Scholar 

  88. Obrant KJ, Ivaska KK, Gerdhem P, Alatalo SL, Pettersson K, Väänänen HK. Biochemical markers of bone turnover are influenced by recently sustained fracture. Bone. 2005;36(5):786–92.

    Article  PubMed  CAS  Google Scholar 

  89. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11(Suppl 6):S2–17.

    Article  PubMed  Google Scholar 

  90. Ju HS, Leung S, Brown B, Stringer MA, Leigh S, Scherrer C, et al. Comparison of analytical performance and biological variability of three bone resorption assays. Clin Chem. 1997;43(9):1570–6.

    PubMed  CAS  Google Scholar 

  91. Schlemmer A, Hassager C, Jensen SB, Christiansen C. Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab. 1992;74(3):476–80.

    Article  PubMed  CAS  Google Scholar 

  92. Wichers M, Schmidt E, Bidlingmaier F, Klingmuller D. Diurnal rhythm of CrossLaps in human serum. Clin Chem. 1999;45(10):1858–60.

    PubMed  CAS  Google Scholar 

  93. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30(6):886–90.

    Article  PubMed  CAS  Google Scholar 

  94. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003;18(12):2180–9.

    Article  PubMed  CAS  Google Scholar 

  95. Adami S, Gatti D, Viapiana O, Fiore CE, Nuti R, Luisetto G, et al. Physical activity and bone turnover markers: a cross-sectional and a longitudinal study. Calcif Tissue Int. 2008;83(6):388–92.

    Article  PubMed  CAS  Google Scholar 

  96. Ryan AS, Treuth MS, Hunter GR, Elahi D. Resistive training maintains bone mineral density in postmenopausal women. Calcif Tissue Int. 1998;62(4):295–9.

    Article  PubMed  CAS  Google Scholar 

  97. Woitge HW, Scheidt-Nave C, Kissling C, Leidig-Bruckner G, Meyer K, Grauer A, et al. Seasonal variation of biochemical indexes of bone turnover: results of a population-based study. J Clin Endocrinol Metab. 1998;83(1):68–75.

    Article  PubMed  CAS  Google Scholar 

  98. Hannon R, Eastell R. Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int. 2000;11(Suppl 6):S30–44.

    Article  PubMed  Google Scholar 

  99. Blumsohn A, Naylor KE, Timm W, Eagleton AC, Hannon RA, Eastell R. Absence of marked seasonal change in bone turnover: a longitudinal and multicenter cross-sectional study. J Bone Miner Res. 2003;18(7):1274–81.

    Article  PubMed  Google Scholar 

  100. Overgaard K, Nilas L, Johansen JS, Christiansen C. Lack of seasonal variation in bone mass and biochemical estimates of bone turnover. Bone. 1988;9(5):285–8.

    Article  PubMed  CAS  Google Scholar 

  101. Meier C, Meinhardt U, Greenfield JR, De Winter J, Nguyen TV, Dunstan CR, et al. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget’s disease. Clin Lab. 2006;52(1–2):1–10.

    PubMed  CAS  Google Scholar 

  102. Prezelj J, Ostanek B, Logar DB, Marc J, Hawa G, Kocjan T. Cathepsin K predicts femoral neck bone mineral density change in nonosteoporotic peri- and early postmenopausal women. Menopause. 2008;15(2):369–73.

    Article  PubMed  Google Scholar 

  103. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46.

    Article  PubMed  CAS  Google Scholar 

  104. Khosla S, Arrighi HM, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Dunstan C, et al. Correlates of osteoprotegerin levels in women and men. Osteoporos Int. 2002;13(5):394–9.

    Article  PubMed  CAS  Google Scholar 

  105. Mezquita-Raya P, de la Higuera M, Garcia DF, Alonso G, Ruiz-Requena ME, de Dios Luna J, et al. The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women. Osteoporos Int. 2005;16(11):1368–74.

    Article  PubMed  Google Scholar 

  106. Hawa G, Brinskelle-Schmal N, Glatz K, Maitzen S, Woloszczuk W. Immunoassay for soluble RANKL (receptor activator of NF-kappaB ligand) in serum. Clin Lab. 2003;49(9–10):461–3.

    PubMed  CAS  Google Scholar 

  107. Schett G, Kiechl S, Redlich K, Oberhollenzer F, Weger S, Egger G, et al. Soluble RANKL and risk of nontraumatic fracture. Jama. 2004;291(9):1108–13.

    Article  PubMed  CAS  Google Scholar 

  108. Yoshimura N, Hashimoto T, Sakata K, Morioka S, Kasamatsu T, Cooper C. Biochemical markers of bone turnover and bone loss at the lumbar spine and femoral neck: the Taiji study. Calcif Tissue Int. 1999;65(3):198–202.

    Article  PubMed  CAS  Google Scholar 

  109. Chapurlat RD, Gamero P, Sornay-Rendu E, Arlot ME, Claustrat B, Delmas PD. Longitudinal study of bone loss in pre- and perimenopausal women: evidence for bone loss in perimenopausal women. Osteoporos Int. 2000;11(6):493–8.

    Article  PubMed  CAS  Google Scholar 

  110. Dennison E, Eastell R, Fall CH, Kellingray S, Wood PJ, Cooper C. Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int. 1999;10(5):384–91.

    Article  PubMed  CAS  Google Scholar 

  111. Iki M, Kajita E, Dohi Y, Nishino H, Kusaka Y, Tsuchida C, et al. Age, menopause, bone turnover markers and lumbar bone loss in healthy Japanese women. Maturitas. 1996;25(1):59–67.

    Article  PubMed  CAS  Google Scholar 

  112. Rogers A, Hannon RA, Eastell R. Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res. 2000;15(7):1398–404.

    Article  PubMed  CAS  Google Scholar 

  113. Melton LJ 3rd, Crowson CS, O’Fallon WM, Wahner HW, Riggs BL. Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res. 2003;18(2):312–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support was received from the Swedish Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janaka Lenora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenora, J., Ivaska, K.K. & Gerdhem, P. Use of Bone Turnover Markers in Osteoporosis. Clinic Rev Bone Miner Metab 8, 1–14 (2010). https://doi.org/10.1007/s12018-009-9042-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-009-9042-x

Keywords

Navigation