Skip to main content

Advertisement

Log in

Disrupted Iron Metabolism and Ensuing Oxidative Stress may Mediate Cognitive Dysfunction Induced by Chronic Cerebral Hypoperfusion

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron is a highly reactive free radical catalyst that has been shown to exacerbate oxidative stress and cell death in many neurodegenerative diseases. In this study, we produced a rat model of chronic cerebral hypoperfusion (CCH) by permanent bilateral carotid artery occlusion to investigate markers of iron and oxidative stress associated with it. We found CCH led to significant spatial memory impairment in the Morris water maze at 4 months after bilateral ligation. Iron deposition was observed in both the hippocampal CA1 area and cerebral cortex, and was correlated with localized neuronal death and increased lipid peroxidation. Western blotting revealed that the expression levels of ferritin heavy chain and the transferrin receptor were significantly elevated in hippocampus and cortex after CCH, whereas expression of iron regulatory protein 1 was significantly lower than in sham-treated rats. We conclude that localized neurodegeneration and concomitant cognitive impairments following CCH may result, at least in part, from local disruption of neuronal iron metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5:347–360

    Article  PubMed  CAS  Google Scholar 

  2. Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci 28:202–208

    Article  PubMed  CAS  Google Scholar 

  3. Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofman A, Breteler MM (2005) Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 57:789–794

    Article  PubMed  Google Scholar 

  4. Lee JS, Im DS, An YS, Hong JM, Gwag BJ, Joo IS (2011) Chronic cerebral hypoperfusion in a mouse model of Alzheimer's disease: an additional contributing factor of cognitive impairment. Neurosci Lett 489:84–88

    Article  PubMed  CAS  Google Scholar 

  5. Farkas E, Luiten PG, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion- related neurodegenerative diseases. Brain Res Rev 54:162–180

    Article  PubMed  CAS  Google Scholar 

  6. Götz ME, Künig G, Riederer P, Youdim MBH (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63:37–122

    Article  PubMed  Google Scholar 

  7. Yang L, Zhang B, Yin L, Cai B, Shan H, Zhang L, Lu Y, Bi Z (2011) Tanshinone IIA prevented brain iron dyshomeostasis in cerebral ischemic rats. Cell Physiol Biochem 27:23–30

    Article  PubMed  CAS  Google Scholar 

  8. Ni J, Ohta H, Matsumoto K, Watanabe H (1994) Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res 653:231–236

    Article  PubMed  CAS  Google Scholar 

  9. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  10. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 6th edn. Academic, Sydney

    Google Scholar 

  11. Dai X, Chen L, Sokabe M (2007) Neurosteroid estradiol rescues ischemia-induced deficit in the long-term potentiation of rat hippocampal CA1 neurons. Neuropharmacol 52:1124–1138

    Article  CAS  Google Scholar 

  12. Nguyen-Legros J, Bizot J, Bolesse M, Pulicani JP (1980) “Diaminobenzidine black” as a new histochemical demonstration of exogenous iron. Histochemistry 66:239–244

    Article  PubMed  CAS  Google Scholar 

  13. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  14. Bishop G, Robinson S (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron, implications for hypoxia-ischemia and stroke. Brain Res 907:175–187

    Article  PubMed  CAS  Google Scholar 

  15. Klausner RD, Rouault TA, Harford JB (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28

    Article  PubMed  CAS  Google Scholar 

  16. Bonkovsky HL, Ponka P, Bacon BR, Drysdale J, Grace ND, Tavill AS (1996) An update on iron metabolism: summary of the Fifth International Conference on Disorders of Iron Metabolism. Hepatology 24:718–729

    Article  PubMed  CAS  Google Scholar 

  17. Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 93:8175–8182

    Article  PubMed  CAS  Google Scholar 

  18. Qian ZM (2002) Nitric oxide and changes of iron metabolism in exercise. Biol Rev 77:529–536

    Article  PubMed  Google Scholar 

  19. Chasteen ND (1998) Ferritin. Uptake, storage, and release of iron. Met Ions Biol Syst 35:479–514

    PubMed  CAS  Google Scholar 

  20. Rucker P, Torti FM, Torti SV (1996) Role of H and L subunits in mouse ferritin. J Biol Chem 271:33352–33357

    Article  PubMed  CAS  Google Scholar 

  21. Friedman A, Arosio P, Finazzi D, Koziorowski D, Galazka-Friedman J (2011) Ferritin as an important player in neurodegeneration. Parkinsonism Relat Disord 17:423–430

    Article  PubMed  Google Scholar 

  22. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  23. Lin F, Girotti AW (1997) Elevated ferritin production, iron containment, and oxidant resistance in hemin-treated leukemia cells. Arch Biochem Biophys 346:131–141

    Article  PubMed  CAS  Google Scholar 

  24. Garner B, Roberg K, Brunk UT (1998) Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress. Free Radic Res 29:103–114

    Article  PubMed  CAS  Google Scholar 

  25. Oberle S, Polte T, Abate A, Podhaisky HP, Schroder H (1998) Aspirin increases ferritin synthesis in endothelial cells: a novel antioxidant pathway. Circ Res 82:1016–1020

    Article  PubMed  CAS  Google Scholar 

  26. Mandel S, Grunblatt E, Riederer P (2011) Iron in brain function and neurodegenerative disorders. Editorial J Neural Transm 118:299–300

    Google Scholar 

  27. Pinero DJ, Hu J, Cook BM, Scaduto RC Jr, Connor JR (2000) Interleukin-1beta increases binding of the iron regulatory protein and the synthesis of ferritin by increasing the labile iron pool. Biochim Biophys Acta 1497:279–288

    Article  PubMed  CAS  Google Scholar 

  28. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Tsokos M, Switzer R 3rd, Grinberg A, Love P, Tresser N, Rouault TA (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27:209–214

    Article  PubMed  CAS  Google Scholar 

  29. Smith SR, Cooperman S, Lavaute T, Tresser N, Ghosh M, Meyron-Holtz E, Land W, Ollivierre H, Jortner B, Switzer R 3rd, Messing A, Rouault TA (2004) Severity of neurodegeneration correlates with compromise of iron metabolism in mice with iron regulatory protein deficiencies. Ann N Y Acad Sci 1012:65–83

    Article  PubMed  CAS  Google Scholar 

  30. Cooperman SS, Meyron-Holtz EG, Olivierre-Wilson H, Ghosh MC, McConnell JP, Rouault TA (2005) Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2. Blood 106:1084–1091

    Article  PubMed  CAS  Google Scholar 

  31. Kato J, Fujikawa K, Kanda M, Fukuda N, Sasaki K, Takayama T, Kobune M, Takada K, Takimoto R, Hamada H, Ikeda T, Niitsu Y (2001) A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overload. Am J Hum Genet 69:191–197

    Article  PubMed  CAS  Google Scholar 

  32. Li L, Li YW, Zhao JY, Liu YZ, Holscher C (2009) Quantitative analysis of ironconcentration and expression of ferroportin 1 in the cortex and hippocampus of rats induced by cerebral ischemia. J Clin Neurosci 11:1466–1472

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by Shanghai Municipal Health Bureau grant KPB-WSJ1004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., He, Y., Guan, Q. et al. Disrupted Iron Metabolism and Ensuing Oxidative Stress may Mediate Cognitive Dysfunction Induced by Chronic Cerebral Hypoperfusion. Biol Trace Elem Res 150, 242–248 (2012). https://doi.org/10.1007/s12011-012-9455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9455-0

Keywords

Navigation