Skip to main content

Advertisement

Log in

Development of ssDNA Aptamers for the Sensitive Detection of Salmonella typhimurium and Salmonella enteritidis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Salmonella enterica subsp. enterica ser. enteritidis and Salmonella enterica subsp. enterica ser. typhimurium are the most common and severe food-borne pathogens responsible for causing salmonellosis in humans and animals. The development of an early and ultra-sensitive detection system is the first critical step in controlling this disease. To accomplish this, we used the cell systematic evolution of ligands by exponential enrichment (Cell-SELEX) technique to identify single-stranded DNA (ssDNA) aptamers to be used as detection probes that can specifically bind to S. enteritidis and S. typhimurium. A total of 12 target-specific ssDNA aptamers were obtained through ten rounds of Cell-SELEX under stringent selection conditions, and negative selection further enhanced the selectivity among these aptamers. Aptamer specificity was investigated using the gram-negative bacteria E. coli and P. aeruginosa and was found to be much higher towards S. enteritidis and S. typhimurium. Importantly, three candidate aptamers demonstrated higher binding affinities and the dissociation constants (Kd) were found to be in the range of nanomolar to submicromolar levels. Furthermore, individual aptamers were conjugated onto polyvalent directed aptamer polymer, which led to 100-fold increase in binding affinity compared to the individual aptamers alone. Taken together, this study reports the identification of higher affinity and specificity ssDNA aptamers (30mer), which may be useful as capture and detection probes in biosensor-based detection systems for salmonellosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pui, C. F., Wong, W. C., Chai, L. C., Tunung, R., Jeyaletchumi, P. N., Hidayah, M. S., Ubong, A., Farinazleen, M. G., Cheah, Y. K., & Son, R. (2011). Salmonella: a foodborne pathogen. International Food Research Journal, 18, 465–473.

    Google Scholar 

  2. Pegues, D. A., Ohl, M. E., & Miller, S. I. (2005). Salmonella species, including Salmonella typhi. In G. L. Mandell, J. E. Bennet, & R. Dolin (Eds.), Principles and practice of infectious diseases (6th ed., pp. 2636–2654). New York: Churchill Livingstone, Elsevier.

    Google Scholar 

  3. Helms, M., Ethelberg, S., & Molbak, K. (2005). International Salmonella typhimurium DT104 infections, 1992–2001. Emerging Infectious Diseases, 11, 859–867.

    Article  Google Scholar 

  4. Dechet, A. M., Scalla, E., Gensheimer, K., Hoekstra, R., Gunderman-King, Lockett, J. J., Wrigley, D., Chege, W., & Sobel, J. (2006). Multistate Working Group. Outbreak of multidrug-resistant Salmonella enterica serotype Typhimurium Definitive Type 104 infection linked to commercial ground beef, northeastern United States, 2003–2004. Clinical Infectious Diseases, 42, 747–752.

    Article  Google Scholar 

  5. WHO Global Salm-Surv Progress Report II. 2000–2005. WHO Press, World Health Organization, Geneva, Switzerland.

  6. http://www.cdc.gov/nczved/divisions/dfbmd/diseases/salmonellosis/ (last accessed on 23 January 2014).

  7. Lee, D. Y., Lee, E., Min, J. E., Kim, S. H., Oh, H. B., & Park, M. S. (2011). Epidemic by Salmonella I 4,[5],12:i:- and characteristics of isolates in Korea. Infect Chemother, 43, 186–190.

    Article  Google Scholar 

  8. Brenner, F. W., Villar, R. G., Angulo, F. J., Tauxe, & Swaminathan, R. B. (2000). Salmonella nomenclature. Journal of Clinical Microbiology, 38, 2465–2467.

    CAS  Google Scholar 

  9. Dziadkowiec, D., Mansfield, L. P., & Forsythe, S. J. (1995). The detection of Salmonella in skimmed milk powder enrichments using conventional methods and immunomagnetic separation. Letters in Applied Microbiology, 20, 361–364.

    Article  CAS  Google Scholar 

  10. Techathuvanan, C., Draughon, F. A., & D’Souza, D. H. (2010). Real-time reverse transcriptase PCR for the rapid and sensitive detection of Salmonella typhimurium from pork. Journal of Food Protection, 73, 507–514.

    CAS  Google Scholar 

  11. Patel, J. R., Bhagwat, A. A., Sanglay, G. C., & Solomon, M. B. (2006). Rapid detection of Salmonella from hydrodynamic pressure-treated poultry using molecular beacon real-time PCR. Food Microbiology, 23, 39–46.

    Article  CAS  Google Scholar 

  12. Oracz, G., Feleszko, W., Golicka, D., Maksymiuk, J., Klonowska, A., & Szajewska, H. (2003). Rapid diagnosis of acute Salmonella gastrointestinal infection. Clinical Infectious Diseases, 36, 112–115.

    Article  Google Scholar 

  13. Holt, P. S., Gast, R. K., & Greene, C. R. (1995). Rapid detection of S. enteritidis in pooled liquid egg samples using a magnetic bead-ELISA system. Journal of Food Protection, 58, 967–972.

    Google Scholar 

  14. Kumar, S., Balakrishna, K., & Batra, H. V. (2008). Enrichment-elisa for detection of Salmonella typhi from food and water samples. Biomedical and Environmental Sciences, 21, 137–143.

    Article  CAS  Google Scholar 

  15. Lan, Y. B., Wang, S. Z., Yin, Y. G., Clint Hoffmann, W., & Zheng, X. Z. (2008). Using a surface Plasmon resonance biosensor for rapid detection of Salmonella typhimurium in chicken carcass. Journal of Bionic Engineering, 5, 239–246.

    Article  Google Scholar 

  16. Salam, F., & Tothill, I. E. (2009). Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosensors and Bioelectronics, 24, 2630–2636.

    Article  CAS  Google Scholar 

  17. Yuan, J., Tao, Z., Yu, Y., Ma, X., Xia, Y., Wang, L., & Wang, Z. (2014). A visual detection method for Salmonella typhimurium based on aptamer recognition and nanogold labeling. Food Control, 37, 188–192.

    Article  CAS  Google Scholar 

  18. Zuo, P., Li, X., Dominguez, D. C., & Ye, B. C. (2013). A PDMS/paper/glass hybrid microfluidic biochipintegrated with aptamer-functionalized graphene oxidenano-biosensors for one-step multiplexed pathogen detection. Lab on a Chip, 13, 3921–3928.

    Article  CAS  Google Scholar 

  19. Tombelli, S., Minunni, M., & Mascini, M. (2005). Analytical applications of aptamers. Biosensors and Bioelectronics, 20, 2424–2434.

    Article  CAS  Google Scholar 

  20. Irvine, D., Tuerk, C., & Gold, L. (1991). SELEXION. Systematic evolution of nucleic acids by exponential enrichment with integrated optimization by non-linear analysis. Journal of Molecular Biology, 222, 739–761.

    Article  CAS  Google Scholar 

  21. Jayasena, S. D. (1999). Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 45, 1628–1650.

    CAS  Google Scholar 

  22. Cibiel, A., Dupont, D. M., & Ducongé, F. (2011). Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals, 4, 1216–1235.

    Article  CAS  Google Scholar 

  23. Stoltenburg, R., Reinemann, C., & Strehlitz, B. (2007). SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular Engineering, 24, 381–403.

    Article  CAS  Google Scholar 

  24. Tan, W., Donovan, M. J., & Jiang, J. (2013). Aptamers from cell-based selection for bioanalytical applications. Chemistry Review, 113, 2842–2862.

    Article  CAS  Google Scholar 

  25. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  26. Zuker, M. (1989). On finding all suboptimal foldings of an RNA molecule. Science, 244, 48–52.

    Article  CAS  Google Scholar 

  27. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415.

    Article  CAS  Google Scholar 

  28. Park, H. Y., Gedi, V. K., Kim, J., Park, H. C., Han, S. N., & Yoon, M. Y. (2011). Ultrasensitive diagnosis for an anthrax-protective antigen based on a polyvalent directed peptide polymer coupled to zinc oxide nanorods. Advanced Materials, 23, 5425–5429.

    Article  CAS  Google Scholar 

  29. Chen, F., Zhou, J., Luo, F., Mohammed, A. B., & Zhang, X. L. (2007). Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 357, 743–748.

    Article  CAS  Google Scholar 

  30. Lee, Y. J., Han, S. R., Maeng, J. S., Cho, Y. J., & Lee, S. W. (2012). In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochemical and Biophysical Research Communications, 417, 414–420.

    Article  CAS  Google Scholar 

  31. Dwivedi, H. P., Derike, S. R., & Jaykus, L. A. (2010). Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Applied Microbiology and Biotechnology, 87, 2323–2334.

    Article  CAS  Google Scholar 

  32. Joshi, R., Janagama, H., Dwivedi, H. P., Senthil Kumar, T. M. A., Jaykus, L. A., Schefers, J., & Sreevatsan, S. (2009). Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Molecular and Cellular Probes, 23, 20–28.

    Article  CAS  Google Scholar 

  33. Moon, J., Kim, G., Lee, S., & Park, S. (2013). Identification of salmonella typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis. Journal of Microbiological Methods, 95, 162–166.

    Article  CAS  Google Scholar 

  34. Ye, M., Hu, J., Peng, M., Liu, J., Liu, J., Liu, H., Zhao, X., & Tan, W. (2012). Generating aptamers by cell-SELEX for applications in molecular medicine. International Journal of Molecular Sciences, 13, 3341–3353.

    Article  CAS  Google Scholar 

  35. Kissel, J. D., Held, D. M., Hardy, R. W., & Burke, D. H. (2007). Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Nucleic Acids Research, 35, 5039–5050.

    Article  CAS  Google Scholar 

  36. Fischer, N. O., Tok, J. B. H., & Tarasow, T. M. (2008). Massively parallel interrogation of aptamer sequence, structure, and function. PloS One, 3, e2720. doi:10.1371/journal.pone.0002720.

    Article  Google Scholar 

  37. Vandenengel, J. E., & Morse, D. P. (2009). Mutational analysis of a signaling aptamer suggests a mechanism for ligand-triggered structure-switching. Biochemical and Biophysical Research Communications, 378, 51–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ907052)” funded by the Rural Development Administration and by the “Basic Science Research Program through the National Research Foundation of Korea (NRF)” funded by the Ministry of Education, Science and Technology (2012R1A1A2008516), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Young Yoon.

Additional information

Highlights

Identified ssDNA aptamers that selectively bind to S. enteritidis and S. typhimurium.

The candidate aptamers showed high affinity in the nanomolar to sub micromolar range.

Development of conjugated aptamers (PDAP) showed enhanced affinity and specificity.

The identified short 30-mer DNA aptamers can be useful as sensitive detection probes.

Hae-Chul Park and Irshad Ahmed Baig has contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Scheme of PDAP synthesis. a Schematic representation of PDAP (polyvalent directed aptamer polymer). b Schematic representation of PDAP construction. (1) Aptamers were double modified with 5′-FAM and 3′-SH, where FAM acts as the signal probe and the SH group is used as the anchor molecule between the aptamer and SPDP by disulfide bond formation. SPDP is reactive toward amines through the succinimide group and toward sulfhydryl groups through the pyridylthiol group. (2) SPDP-mediated activation of PDL was done by mixing the SPDP-PDL solution at room temperature. The complex was harvested using a gel filtration column. (3) 5′-FAM and 3′-SH labeled aptamers were added to SPDP activated PDL solution. (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HC., Baig, I.A., Lee, SC. et al. Development of ssDNA Aptamers for the Sensitive Detection of Salmonella typhimurium and Salmonella enteritidis . Appl Biochem Biotechnol 174, 793–802 (2014). https://doi.org/10.1007/s12010-014-1103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1103-z

Keywords

Navigation