Skip to main content
Log in

Is there Still a Time Window in the Treatment of Acute Stroke?

  • Cerebrovascular Disorders (Dara G. Jamieson, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

It has become evident that strict time-based criteria are not optimal in selecting patients for acute stroke intervention, leaving the majority of patients untreated due to missing universal time-based criteria. We discuss the pathophysiologic basis for a shift of focus from time to the imaging evidence of salvageable tissue, as well as clinical and imaging tools.

Recent findings

There is strong evidence for the benefit of thrombectomy in patients with a sustained salvageable tissue presenting within 24 h. Although evidence of benefit is limited in patients presenting longer than 24 h, those patients will have a poor functional outcome if untreated. MRI-based approaches to choose patients for thrombolytic therapy later than 4.5 h are relatively safe and modestly effective.

Summary

Defining a patient-based therapeutic window to replace strict time windows and therefore refining patient exclusion and inclusion criteria is possible through understanding pathophysiology of acute ischemic stroke in individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. National Institute of Neurological D, Stroke rt PASSG. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–7. https://doi.org/10.1056/NEJM199512143332401.

    Article  Google Scholar 

  2. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29. https://doi.org/10.1056/NEJMoa0804656.

    Article  CAS  PubMed  Google Scholar 

  3. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31. https://doi.org/10.1016/S0140-6736(16)00163-X.

    Article  PubMed  Google Scholar 

  4. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21. https://doi.org/10.1056/NEJMoa1706442.

    Article  PubMed  Google Scholar 

  5. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group. Lancet. 1997;349(9065):1569–81.

  6. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet. 1997;349(9066):1641–9.

  7. Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355(6):549–59. https://doi.org/10.1056/NEJMoa061894.

    Article  CAS  PubMed  Google Scholar 

  8. Stroke Prevention in Atrial Fibrillation Study. Final results. Circulation. 1991;84(2):527–39. https://doi.org/10.1161/01.cir.84.2.527.

    Article  Google Scholar 

  9. North American Symptomatic Carotid Endarterectomy Trial C, Barnett HJM, Taylor DW, Haynes RB, Sackett DL, Peerless SJ, et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325(7):445–53. https://doi.org/10.1056/NEJM199108153250701.

    Article  Google Scholar 

  10. Zahn R, Schiele R, Schneider S, Gitt AK, Wienbergen H, Seidl K, et al. Primary angioplasty versus intravenous thrombolysis in acute myocardial infarction: can we define subgroups of patients benefiting most from primary angioplasty? Results from the pooled data of the maximal individual therapy in acute myocardial infarction registry and the myocardial infarction registry. J Am Coll Cardiol. 2001;37(7):1827–35. https://doi.org/10.1016/s0735-1097(01)01264-5.

    Article  CAS  PubMed  Google Scholar 

  11. Hakeem A, Garg N, Bhatti S, Rajpurohit N, Ahmed Z, Uretsky BF. Effectiveness of percutaneous coronary intervention with drug-eluting stents compared with bypass surgery in diabetics with multivessel coronary disease: comprehensive systematic review and meta-analysis of randomized clinical data. J Am Heart Assoc. 2013;2(4):e000354. https://doi.org/10.1161/JAHA.113.000354.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18. https://doi.org/10.1056/NEJMoa1713973.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418. https://doi.org/10.1161/STR.0000000000000211.

    Article  PubMed  Google Scholar 

  14. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306. https://doi.org/10.1056/NEJMoa1503780.

    Article  CAS  PubMed  Google Scholar 

  15. Rocha M, Desai SM, Jadhav AP, Jovin TG. Prevalence and temporal distribution of fast and slow progressors of infarct growth in large vessel occlusion stroke. Stroke. 2019;50(8):2238–40. https://doi.org/10.1161/STROKEAHA.118.024035.

    Article  PubMed  Google Scholar 

  16. Jovin TG, Yonas H, Gebel JM, Kanal E, Chang YF, Grahovac SZ, et al. The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke. 2003;34(10):2426–33. https://doi.org/10.1161/01.STR.0000091232.81947.C9.

    Article  PubMed  Google Scholar 

  17. Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42(7):1952–5. https://doi.org/10.1161/STROKEAHA.110.612358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jadhav AP, Desai SM, Kenmuir CL, Rocha M, Starr MT, Molyneaux BJ, et al. Eligibility for endovascular trial enrollment in the 6- to 24-hour time window: analysis of a single comprehensive stroke center. Stroke. 2018;49(4):1015–7. https://doi.org/10.1161/STROKEAHA.117.020273.

    Article  PubMed  Google Scholar 

  19. Wechsler LR. Intravenous thrombolytic therapy for acute ischemic stroke. N Engl J Med. 2011;364(22):2138–46. https://doi.org/10.1056/NEJMct1007370.

    Article  CAS  PubMed  Google Scholar 

  20. Liebeskind DS. Collaterals in acute stroke: beyond the clot. Neuroimaging Clin N Am. 2005;15(3):553–73, x. https://doi.org/10.1016/j.nic.2005.08.012.

  21. Darby DG, Barber PA, Gerraty RP, Desmond PM, Yang Q, Parsons M, et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke. 1999;30(10):2043–52.

    Article  CAS  PubMed  Google Scholar 

  22. Rocha M, Jovin TG. Fast versus slow progressors of infarct growth in large vessel occlusion stroke: clinical and research implications. Stroke. 2017;48(9):2621–7. https://doi.org/10.1161/STROKEAHA.117.017673.

    Article  PubMed  Google Scholar 

  23. Barber PA, Darby DG, Desmond PM, Yang Q, Gerraty RP, Jolley D, et al. Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology. 1998;51(2):418–26. https://doi.org/10.1212/wnl.51.2.418.

    Article  CAS  PubMed  Google Scholar 

  24. Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler LR, Jovin TG, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol. 2012;11(10):860–7. https://doi.org/10.1016/S1474-4422(12)70203-X.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316(12):1279–88. https://doi.org/10.1001/jama.2016.13647.

    Article  PubMed  Google Scholar 

  26. Bivard A, Huang X, Levi CR, Campbell BC, Cheripelli BK, Chen C, et al. Comparing mismatch strategies for patients being considered for ischemic stroke tenecteplase trials. Int J Stroke. 2019;1747493019884529:174749301988452. https://doi.org/10.1177/1747493019884529.

    Article  Google Scholar 

  27. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368(10):914–23. https://doi.org/10.1056/NEJMoa1212793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mishra NK, Albers GW, Christensen S, Marks M, Hamilton S, Straka M, et al. Comparison of magnetic resonance imaging mismatch criteria to select patients for endovascular stroke therapy. Stroke. 2014;45(5):1369–74. https://doi.org/10.1161/STROKEAHA.114.004772.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liebeskind DS, Jahan R, Nogueira RG, Zaidat OO, Saver JL, Investigators S. Impact of collaterals on successful revascularization in Solitaire FR with the intention for thrombectomy. Stroke. 2014;45(7):2036–40. https://doi.org/10.1161/STROKEAHA.114.004781.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Menon BK, Qazi E, Nambiar V, Foster LD, Yeatts SD, Liebeskind D, et al. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the Interventional Management of Stroke III trial. Stroke. 2015;46(5):1239–44. https://doi.org/10.1161/STROKEAHA.115.009009.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Miteff F, Levi CR, Bateman GA, Spratt N, McElduff P, Parsons MW. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain. 2009;132(Pt 8):2231–8. https://doi.org/10.1093/brain/awp155.

    Article  PubMed  Google Scholar 

  32. Sun CH, Connelly K, Nogueira RG, Glenn BA, Zimmermann S, Anda K, et al. ASPECTS decay during inter-facility transfer predicts patient outcomes in endovascular reperfusion for ischemic stroke: a unique assessment of dynamic physiologic change over time. J Neurointerv Surg. 2015;7(1):22–6. https://doi.org/10.1136/neurintsurg-2013-011048.

    Article  PubMed  Google Scholar 

  33. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, et al. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke. 2011;42(3):693–9. https://doi.org/10.1161/STROKEAHA.110.595256.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sheth SA, Sanossian N, Hao Q, Starkman S, Ali LK, Kim D, et al. Collateral flow as causative of good outcomes in endovascular stroke therapy. J Neurointerv Surg. 2016;8(1):2–7. https://doi.org/10.1136/neurintsurg-2014-011438.

    Article  PubMed  Google Scholar 

  35. Puhr-Westerheide D, Tiedt S, Rotkopf LT, Herzberg M, Reidler P, Fabritius MP, et al. Clinical and imaging parameters associated with hyperacute infarction growth in large vessel occlusion stroke. Stroke. 2019;50(10):2799–804. https://doi.org/10.1161/STROKEAHA.119.025809.

    Article  PubMed  Google Scholar 

  36. Broocks G, Kniep H, Schramm P, Hanning U, Flottmann F, Faizy T, et al. Patients with low Alberta Stroke Program Early CT Score (ASPECTS) but good collaterals benefit from endovascular recanalization. J Neurointerv Surg. 2019:neurintsurg-2019-015308. https://doi.org/10.1136/neurintsurg-2019-015308.

  37. Renu A, Laredo C, Montejo C, Zhao Y, Rudilosso S, Macias N, et al. Greater infarct growth limiting effect of mechanical thrombectomy in stroke patients with poor collaterals. J Neurointerv Surg. 2019;11(10):989–93. https://doi.org/10.1136/neurintsurg-2018-014668.

    Article  PubMed  Google Scholar 

  38. Christoforidis GA, Saadat N, Kontzialis M, Karakasis CJ, Slivka AP. Predictors for the extent of pial collateral recruitment in acute ischemic stroke. Neuroradiol J. 2020;1971400919897389:98–104. https://doi.org/10.1177/1971400919897389.

    Article  Google Scholar 

  39. Raychev R, Liebeskind DS, Yoo AJ, Rasmussen M, Arnaudov D, Brown S, et al. Physiologic predictors of collateral circulation and infarct growth during anesthesia - detailed analyses of the GOLIATH trial. J Cereb Blood Flow Metab. 2019:271678X19865219. https://doi.org/10.1177/0271678X19865219.

  40. Almekhlafi MA, Kunz WG, McTaggart RA, Jayaraman MV, Najm M, Ahn SH, et al. Imaging triage of patients with late-window (6-24 hours) acute ischemic stroke: a comparative study using multiphase CT angiography versus CT perfusion. AJNR Am J Neuroradiol. 2020;41(1):129–33. https://doi.org/10.3174/ajnr.A6327.

  41. Kim B, Jung C, Nam HS, Kim BM, Kim YD, Heo JH, et al. Comparison between perfusion- and collateral-based triage for endovascular thrombectomy in a late time window. Stroke. 2019;50(12):3465–70. https://doi.org/10.1161/STROKEAHA.119.027216.

    Article  PubMed  Google Scholar 

  42. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30. https://doi.org/10.1056/NEJMoa1414905.

    Article  CAS  PubMed  Google Scholar 

  43. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95. https://doi.org/10.1056/NEJMoa1415061.

    Article  CAS  PubMed  Google Scholar 

  44. McTaggart RA, Jovin TG, Lansberg MG, Mlynash M, Jayaraman MV, Choudhri OA, et al. Alberta stroke program early computed tomographic scoring performance in a series of patients undergoing computed tomography and MRI: reader agreement, modality agreement, and outcome prediction. Stroke. 2015;46(2):407–12. https://doi.org/10.1161/STROKEAHA.114.006564.

    Article  PubMed  Google Scholar 

  45. Weir NU, Pexman JH, Hill MD, Buchan AM, Investigators C. How well does ASPECTS predict the outcome of acute stroke treated with IV tPA? Neurology. 2006;67(3):516–8. https://doi.org/10.1212/01.wnl.0000228221.44334.73.

    Article  PubMed  Google Scholar 

  46. Nezu T, Koga M, Nakagawara J, Shiokawa Y, Yamagami H, Furui E, et al. Early ischemic change on CT versus diffusion-weighted imaging for patients with stroke receiving intravenous recombinant tissue-type plasminogen activator therapy: stroke acute management with urgent risk-factor assessment and improvement (SAMURAI) rt-PA registry. Stroke. 2011;42(8):2196–200. https://doi.org/10.1161/STROKEAHA.111.614404.

    Article  PubMed  Google Scholar 

  47. Gupta AC, Schaefer PW, Chaudhry ZA, Leslie-Mazwi TM, Chandra RV, Gonzalez RG, et al. Interobserver reliability of baseline noncontrast CT Alberta Stroke Program Early CT Score for intra-arterial stroke treatment selection. AJNR Am J Neuroradiol. 2012;33(6):1046–9. https://doi.org/10.3174/ajnr.A2942.

  48. Amukotuwa S, Straka M, Aksoy D, Fischbein N, Desmond P, Albers G, et al. Cerebral blood flow predicts the infarct core: new insights from contemporaneous diffusion and perfusion imaging. Stroke. 2019;50(10):2783–9. https://doi.org/10.1161/STROKEAHA.119.026640.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Quast MJ, Huang NC, Hillman GR, Kent TA. The evolution of acute stroke recorded by multimodal magnetic resonance imaging. Magn Reson Imaging. 1993;11(4):465–71. https://doi.org/10.1016/0730-725x(93)90465-p.

    Article  CAS  PubMed  Google Scholar 

  50. Kretzer L, Grassel D, Bokemeyer MA, Gunther A, Witte OW, Axer H, et al. Effect of intravenous thrombolysis on the time course of the apparent diffusion coefficient in acute middle cerebral artery infarction. J Neuroimaging. 2015;25(6):978–82. https://doi.org/10.1111/jon.12240.

    Article  PubMed  Google Scholar 

  51. Hsia AW, Luby M, Cullison K, Burton S, Armonda R, Liu AH, et al. Rapid apparent diffusion coefficient evolution after early revascularization. Stroke. 2019;50(8):2086–92. https://doi.org/10.1161/STROKEAHA.119.025784.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baron JC. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis. 1999;9(4):193–201. https://doi.org/10.1159/000015955.

    Article  CAS  PubMed  Google Scholar 

  53. Heiss WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab. 2000;20(9):1276–93. https://doi.org/10.1097/00004647-200009000-00002.

    Article  CAS  PubMed  Google Scholar 

  54. Hakim AM, Evans AC, Berger L, Kuwabara H, Worsley K, Marchal G, et al. The effect of nimodipine on the evolution of human cerebral infarction studied by PET. J Cereb Blood Flow Metab. 1989;9(4):523–34. https://doi.org/10.1038/jcbfm.1989.76.

    Article  CAS  PubMed  Google Scholar 

  55. Ford AL, An H, Vo KD, Lin W, Lee JM. Defining the ischemic penumbra using hyperacute neuroimaging: deriving quantitative ischemic thresholds. Transl Stroke Res. 2012;3(2):198–204. https://doi.org/10.1007/s12975-012-0181-x.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–7. https://doi.org/10.1161/01.str.8.1.51.

    Article  CAS  PubMed  Google Scholar 

  57. Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54(6):773–82. https://doi.org/10.3171/jns.1981.54.6.0773.

    Article  CAS  PubMed  Google Scholar 

  58. Heiss WD, Rosner G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol. 1983;14(3):294–301. https://doi.org/10.1002/ana.410140307.

    Article  CAS  PubMed  Google Scholar 

  59. Sobesky J, Zaro Weber O, Lehnhardt FG, Hesselmann V, Thiel A, Dohmen C, et al. Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke. 2004;35(12):2843–7. https://doi.org/10.1161/01.STR.0000147043.29399.f6.

    Article  CAS  PubMed  Google Scholar 

  60. Zaro-Weber O, Moeller-Hartmann W, Heiss WD, Sobesky J. Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography. Stroke. 2010;41(12):2817–21. https://doi.org/10.1161/STROKEAHA.110.594432.

    Article  PubMed  Google Scholar 

  61. Zaro-Weber O, Moeller-Hartmann W, Siegmund D, Kandziora A, Schuster A, Heiss WD, et al. MRI-based mismatch detection in acute ischemic stroke: optimal PWI maps and thresholds validated with PET. J Cereb Blood Flow Metab. 2017;37(9):3176–83. https://doi.org/10.1177/0271678X16685574.

    Article  PubMed  Google Scholar 

  62. Olivot JM, Mlynash M, Inoue M, Marks MP, Wheeler HM, Kemp S, et al. Hypoperfusion intensity ratio predicts infarct progression and functional outcome in the DEFUSE 2 cohort. Stroke. 2014;45(4):1018–23. https://doi.org/10.1161/STROKEAHA.113.003857.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gunawardena R, Cheung A, Spira P, He J, Wenderoth J, Chiu AHY. Successful endovascular thrombectomy 90h after stroke onset. J Clin Neurosci. 2017;46:69–71. https://doi.org/10.1016/j.jocn.2017.08.047.

    Article  PubMed  Google Scholar 

  64. So C, Chaudhry N, Gandhi D, Cole JW, Motta M. Endovascular thrombectomy in acute-onset ischemic stroke - beyond the standard time windows: a case report and a review of the literature. Case Rep Neurol. 2018;10(3):279–85. https://doi.org/10.1159/000492892.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Aguilar-Salinas P, Santos R, Granja MF, Effendi S, Sauvageau E, Hanel R, et al. Republished: revisiting the therapeutic time window dogma: successful thrombectomy 6 days after stroke onset. J Neurointerv Surg. 2019;11(10):e8. https://doi.org/10.1136/neurintsurg-2018-014039.rep.

    Article  PubMed  Google Scholar 

  66. •• Desai SM, Haussen DC, Aghaebrahim A, Al-Bayati AR, Santos R, Nogueira RG, et al. Thrombectomy 24 hours after stroke: beyond DAWN. J Neurointerv Surg. 2018;10(11):1039–42. https://doi.org/10.1136/neurintsurg-2018-013923. This study discusses outcomes of 21 acute stroke patients undergoing thrombecyomy more than 24 hours after stroke onset.

    Article  PubMed  Google Scholar 

  67. •• Christensen S, Mlynash M, Kemp S, Yennu A, Heit JJ, Marks MP, et al. Persistent target mismatch profile >24 hours after stroke onset in DEFUSE 3. Stroke. 2019;50(3):754–7. https://doi.org/10.1161/STROKEAHA.118.023392. They analyzed outcome of patients in the medical arm of DEFUSE 3, including those who maintained their favourable imaging profile at 38 hours after stroke onset.

    Article  PubMed  Google Scholar 

  68. • Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22. https://doi.org/10.1056/NEJMoa1804355. They studied activase administration to ischemic stroke patients who presented longer than 4.5 hours but had evidence of salvagable tissue on MRI.

    Article  PubMed  Google Scholar 

  69. Rimmele DL, Thomalla G. Wake-up stroke: clinical characteristics, imaging findings, and treatment option - an update. Front Neurol. 2014;5:35. https://doi.org/10.3389/fneur.2014.00035.

    Article  PubMed  PubMed Central  Google Scholar 

  70. • Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803. https://doi.org/10.1056/NEJMoa1813046. Administration of activase in ischemic stroke patients who presented longer than 4.5 hours but had DWI-FLAIR mismatch on their imaging profile.

    Article  PubMed  Google Scholar 

  71. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20. https://doi.org/10.1056/NEJMoa1411587.

    Article  CAS  PubMed  Google Scholar 

  72. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18. https://doi.org/10.1056/NEJMoa1414792.

    Article  CAS  PubMed  Google Scholar 

  73. Merwick A, Werring D. Posterior circulation ischaemic stroke. BMJ. 2014;348:g3175. https://doi.org/10.1136/bmj.g3175.

    Article  CAS  PubMed  Google Scholar 

  74. Weber R, Minnerup J, Nordmeyer H, Eyding J, Krogias C, Hadisurya J, et al. Thrombectomy in posterior circulation stroke: differences in procedures and outcome compared to anterior circulation stroke in the prospective multicentre REVASK registry. Eur J Neurol. 2019;26(2):299–305. https://doi.org/10.1111/ene.13809.

    Article  CAS  PubMed  Google Scholar 

  75. Singer OC, Berkefeld J, Nolte CH, Bohner G, Haring HP, Trenkler J, et al. Mechanical recanalization in basilar artery occlusion: the ENDOSTROKE study. Ann Neurol. 2015;77(3):415–24. https://doi.org/10.1002/ana.24336.

    Article  PubMed  Google Scholar 

  76. Schonewille WJ, Wijman CA, Michel P, Rueckert CM, Weimar C, Mattle HP, et al. Treatment and outcomes of acute basilar artery occlusion in the Basilar Artery International Cooperation tudy (BASICS): a prospective registry study. Lancet Neurol. 2009;8(8):724–30. https://doi.org/10.1016/S1474-4422(09)70173-5.

    Article  PubMed  Google Scholar 

  77. Raymond S, Rost NS, Schaefer PW, Leslie-Mazwi T, Hirsch JA, Gonzalez RG, et al. Patient selection for mechanical thrombectomy in posterior circulation emergent large-vessel occlusion. Interv Neuroradiol. 2018;24(3):309–16. https://doi.org/10.1177/1591019917747253.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Liebeskind MD.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cerebrovascular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshayedi, P., Saber, H. & Liebeskind, D.S. Is there Still a Time Window in the Treatment of Acute Stroke?. Curr Treat Options Neurol 22, 19 (2020). https://doi.org/10.1007/s11940-020-00628-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-00628-2

Keywords

Navigation