Skip to main content

Advertisement

Log in

Vertebral Imaging in the Diagnosis of Osteoporosis: a Clinician’s Perspective

  • Therapeutics and Medical Management (S Jan de Beur and B Clarke, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Vertebral fractures are the most common osteoporotic fracture and result in functional decline and excess mortality. Dual-energy x-ray absorptiometry (DXA) is the gold standard for the diagnosis of osteoporosis to identify patients at risk for fragility fractures; however, advances in imaging have expanded the role of computed tomography (CT) and magnetic resonance imaging (MRI) in evaluating bone health.

Recent Findings

The utility of CT and MRI in the assessment of bone density is starting to gain traction, particularly when used opportunistically. DXA, conventional radiography, CT, and MRI can all be used to assess for vertebral fractures, and MRI can determine the acuity of fractures. Finally, advances in imaging allow for non-invasive assessment of measures of bone quality, including microarchitecture, bone strength, and bone turnover, to help identify and treat at-risk patients prior to sustaining a vertebral fracture.

Summary

CT and MRI techniques remain primarily research tools to assess metabolic bone dysfunction, while use of DXA can be clinically expanded beyond measurement of bone density to assess for vertebral fractures and bone architecture to improve fracture risk assessment and guide treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Office of the Surgeon G. Bone health and osteoporosis : a report of the Surgeon General. Rockville: U.S. Dept. of Health and Human Services, Public Health Service, Office of the Surgeon General; 2004.

    Google Scholar 

  2. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81. https://doi.org/10.1007/s00198-014-2794-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK, et al. What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res. 2005;20(7):1216–22. https://doi.org/10.1359/JBMR.050314.

    Article  PubMed  Google Scholar 

  4. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301(5):513–21. https://doi.org/10.1001/jama.2009.50.

    Article  CAS  PubMed  Google Scholar 

  5. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures: study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1999;14(5):821–8. https://doi.org/10.1359/jbmr.1999.14.5.821.

    Article  CAS  PubMed  Google Scholar 

  6. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1–129.

  7. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 1994;4(6):368–81.

    Article  CAS  PubMed  Google Scholar 

  8. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom. 2013;16(4):455–66. https://doi.org/10.1016/j.jocd.2013.08.004.

    Article  PubMed  Google Scholar 

  9. Cohen A, Shane E. Evaluation and management of the premenopausal woman with low BMD. Curr Osteoporos Rep. 2013;11(4):276–85. https://doi.org/10.1007/s11914-013-0161-4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Greenspan SL, Maitland LA, Myers ER, Krasnow MB, Kido TH. Femoral bone loss progresses with age: a longitudinal study in women over age 65. J Bone Miner Res. 1994;9(12):1959–65. https://doi.org/10.1002/jbmr.5650091216.

    Article  CAS  PubMed  Google Scholar 

  11. Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, et al. Population-based geographic variations in DXA bone density in Europe: the EVOS Study. European Vertebral Osteoporosis. Osteoporos Int. 1997;7(3):175–89.

    Article  CAS  PubMed  Google Scholar 

  12. Riggs BL, Wahner HW, Melton LJ 3rd, Richelson LS, Judd HL, Offord KP. Rates of bone loss in the appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause. J Clin Invest. 1986;77(5):1487–91. https://doi.org/10.1172/jci112462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guglielmi G, Grimston SK, Fischer KC, Pacifici R. Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology. 1994;192(3):845–50. https://doi.org/10.1148/radiology.192.3.8058958.

    Article  CAS  PubMed  Google Scholar 

  14. Finkelstein JS, Cleary RL, Butler JP, Antonelli R, Mitlak BH, Deraska DJ, et al. A comparison of lateral versus anterior-posterior spine dual energy x-ray absorptiometry for the diagnosis of osteopenia. J Clin Endocrinol Metab. 1994;78(3):724–30. https://doi.org/10.1210/jcem.78.3.8126149.

    CAS  PubMed  Google Scholar 

  15. Del Rio L, Pons F, Huguet M, Setoain FJ, Setoain J. Anteroposterior versus lateral bone mineral density of spine assessed by dual X-ray absorptiometry. Eur J Nucl Med. 1995;22(5):407–12.

    Article  PubMed  Google Scholar 

  16. Peel NF, Eastell R. Diagnostic value of estimated volumetric bone mineral density of the lumbar spine in osteoporosis. J Bone Miner Res. 1994;9(3):317–20. https://doi.org/10.1002/jbmr.5650090305.

    Article  CAS  PubMed  Google Scholar 

  17. Blake GM, Herd RJ, Fogelman I. A longitudinal study of supine lateral DXA of the lumbar spine: a comparison with posteroanterior spine, hip and total-body DXA. Osteoporos Int. 1996;6(6):462–70.

    Article  CAS  PubMed  Google Scholar 

  18. Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol. 2013;9(1):28–42. https://doi.org/10.1038/nrendo.2012.217.

    Article  CAS  PubMed  Google Scholar 

  19. Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res. 2012;27(1):119–24. https://doi.org/10.1002/jbmr.506.

    Article  PubMed  Google Scholar 

  20. Blake GM, Griffith JF, Yeung DK, Leung PC, Fogelman I. Effect of increasing vertebral marrow fat content on BMD measurement, T-Score status and fracture risk prediction by DXA. Bone. 2009;44(3):495–501. https://doi.org/10.1016/j.bone.2008.11.003.

    Article  CAS  PubMed  Google Scholar 

  21. Griffith JF, Genant HK. New advances in imaging osteoporosis and its complications. Endocrine. 2012;42(1):39–51. https://doi.org/10.1007/s12020-012-9691-2.

    Article  CAS  PubMed  Google Scholar 

  22. Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton IL, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893–9. https://doi.org/10.1359/JBMR.040134.

    Article  PubMed  Google Scholar 

  23. Luengo M, Picado C, Del Rio L, Guanabens N, Montserrat JM, Setoain J. Vertebral fractures in steroid dependent asthma and involutional osteoporosis: a comparative study. Thorax. 1991;46(11):803–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. King AB, Fiorentino DM. Medicare payment cuts for osteoporosis testing reduced use despite tests’ benefit in reducing fractures. Health Aff. 2011;30(12):2362–70. https://doi.org/10.1377/hlthaff.2011.0233.

    Article  Google Scholar 

  25. Trijau S, de Lamotte G, Pradel V, Natali F, Allaria-Lapierre V, Coudert H, et al. Osteoporosis prevention among chronic glucocorticoid users: results from a public health insurance database. RMD Open. 2016;2(2):e000249. https://doi.org/10.1136/rmdopen-2016-000249.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leslie WD, Giangregorio LM, Yogendran M, Azimaee M, Morin S, Metge C, et al. A population-based analysis of the post-fracture care gap 1996-2008: the situation is not improving. Osteoporos Int. 2012;23(5):1623–9. https://doi.org/10.1007/s00198-011-1630-1.

    Article  CAS  PubMed  Google Scholar 

  27. • Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013;158(8):588–95. https://doi.org/10.7326/0003-4819-158-8-201304160-00003. This study shows that abdominal CT images obtained for other reasons can be used opportunistically to identify patients with osteoporosis.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buckens CF, Dijkhuis G, de Keizer B, Verhaar HJ, de Jong PA. Opportunistic screening for osteoporosis on routine computed tomography? An external validation study. Eur Radiol. 2015;25(7):2074–9. https://doi.org/10.1007/s00330-014-3584-0.

    Article  PubMed  Google Scholar 

  29. Marinova M, Edon B, Wolter K, Katsimbari B, Schild HH, Strunk HM. Use of routine thoracic and abdominal computed tomography scans for assessing bone mineral density and detecting osteoporosis. Curr Med Res Opin. 2015;31(10):1871–81. https://doi.org/10.1185/03007995.2015.1074892.

    Article  PubMed  Google Scholar 

  30. Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, et al. Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part III. J Clin Densitom. 2015;18(3):393–407. https://doi.org/10.1016/j.jocd.2015.06.010.

    Article  PubMed  Google Scholar 

  31. Link TM, Lang TF. Axial QCT: clinical applications and new developments. J Clin Densitom. 2014;17(4):438–48. https://doi.org/10.1016/j.jocd.2014.04.119.

    Article  PubMed  Google Scholar 

  32. Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16. https://doi.org/10.1002/jbmr.1539.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mackey DC, Eby JG, Harris F, Taaffe DR, Cauley JA, Tylavsky FA, et al. Prediction of clinical non-spine fractures in older black and white men and women with volumetric BMD of the spine and areal BMD of the hip: the health, aging, and body composition study. J Bone Miner Res. 2007;22(12):1862–8. https://doi.org/10.1359/jbmr.070807.

    Article  PubMed  Google Scholar 

  34. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003;349(13):1207–15. https://doi.org/10.1056/NEJMoa031975.

    Article  CAS  PubMed  Google Scholar 

  35. Cohen A, Lang TF, McMahon DJ, Liu XS, Guo XE, Zhang C, et al. Central QCT reveals lower volumetric BMD and stiffness in premenopausal women with idiopathic osteoporosis, regardless of fracture history. J Clin Endocrinol Metab. 2012;97(11):4244–52. https://doi.org/10.1210/jc.2012-2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen A, Dempster DW, Recker RR, Stein EM, Lappe JM, Zhou H, et al. Abnormal bone microarchitecture and evidence of osteoblast dysfunction in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab. 2011;96(10):3095–105. https://doi.org/10.1210/jc.2011-1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen A, Liu XS, Stein EM, McMahon DJ, Rogers HF, Lemaster J, et al. Bone microarchitecture and stiffness in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab. 2009;94(11):4351–60. https://doi.org/10.1210/jc.2009-0996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. ACR-SPR-SSR practice parameter for the performance of quantitative computed tomography (QCT) bone densitometry. 2013. https://www.acr.org/~/media/DE78D218C7A64526A821A9E8645AB46D.pdf. Accessed 9 May 2017.

  39. Wesarg S, Kirschner M, Becker M, Erdt M, Kafchitsas K, Khan MF. Dual-energy CT-based assessment of the trabecular bone in vertebrae. Methods Inf Med. 2012;51(5):398–405. https://doi.org/10.3414/ME11-02-0034.

    Article  CAS  PubMed  Google Scholar 

  40. Wichmann JL, Booz C, Wesarg S, Kafchitsas K, Bauer RW, Kerl JM, et al. Dual-energy CT-based phantomless in vivo three-dimensional bone mineral density assessment of the lumbar spine. Radiology. 2014;271(3):778–84. https://doi.org/10.1148/radiol.13131952.

    Article  PubMed  Google Scholar 

  41. Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol. 2002;55(9):693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shen W, Scherzer R, Gantz M, Chen J, Punyanitya M, Lewis CE, et al. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab. 2012;97(4):1337–46. https://doi.org/10.1210/jc.2011-2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koyama H, Yoshihara H, Kotera M, Tamura T, Sugimura K. The quantitative diagnostic capability of routine MR imaging and diffusion-weighted imaging in osteoporosis patients. Clin Imaging. 2013;37(5):925–9. https://doi.org/10.1016/j.clinimag.2013.05.001.

    Article  PubMed  Google Scholar 

  44. Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield SB. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int. 2007;18(5):641–7. https://doi.org/10.1007/s00198-006-0285-9.

    Article  CAS  PubMed  Google Scholar 

  45. Bandirali M, Di Leo G, Papini GD, Messina C, Sconfienza LM, Ulivieri FM, et al. A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol. 2015;25(10):2951–9. https://doi.org/10.1007/s00330-015-3699-y.

    Article  PubMed  Google Scholar 

  46. Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22(2):279–85. https://doi.org/10.1002/jmri.20367.

    Article  PubMed  Google Scholar 

  47. Agrawal K, Agarwal Y, Chopra RK, Batra A, Chandra R, Thukral BB. Evaluation of MR spectroscopy and diffusion-weighted MRI in postmenopausal bone strength. Cureus. 2015;7(9):e327. https://doi.org/10.7759/cureus.327.

    PubMed  PubMed Central  Google Scholar 

  48. Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology. 2005;236(3):945–51. https://doi.org/10.1148/radiol.2363041425.

    Article  PubMed  Google Scholar 

  49. Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–8. https://doi.org/10.1148/radiol.2413051858.

    Article  PubMed  Google Scholar 

  50. Siris ES, Adler R, Bilezikian J, Bolognese M, Dawson-Hughes B, Favus MJ, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014;25(5):1439–43. https://doi.org/10.1007/s00198-014-2655-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359(9319):1761–7. https://doi.org/10.1016/S0140-6736(02)08657-9.

    Article  PubMed  Google Scholar 

  52. Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD Position Development Conference on Advanced Measures From DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18(3):274–86. https://doi.org/10.1016/j.jocd.2015.06.013.

    Article  PubMed  Google Scholar 

  53. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48. https://doi.org/10.1002/jbmr.5650080915.

    Article  CAS  PubMed  Google Scholar 

  54. Leidig-Bruckner G, Limberg B, Felsenberg D, Bruckner T, Holder S, Kather A, et al. Sex difference in the validity of vertebral deformities as an index of prevalent vertebral osteoporotic fractures: a population survey of older men and women. Osteoporos Int. 2000;11(2):102–19. https://doi.org/10.1007/PL00004172.

    Article  CAS  PubMed  Google Scholar 

  55. Wu CY, Li J, Jergas M, Genant HK. Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int. 1995;5(5):354–70.

    Article  CAS  PubMed  Google Scholar 

  56. Jager PL, Jonkman S, Koolhaas W, Stiekema A, Wolffenbuttel BH, Slart RH. Combined vertebral fracture assessment and bone mineral density measurement: a new standard in the diagnosis of osteoporosis in academic populations. Osteoporos Int. 2011;22(4):1059–68. https://doi.org/10.1007/s00198-010-1293-3.

    Article  CAS  PubMed  Google Scholar 

  57. Cuenod CA, Laredo JD, Chevret S, Hamze B, Naouri JF, Chapaux X, et al. Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology. 1996;199(2):541–9. https://doi.org/10.1148/radiology.199.2.8668809.

    Article  CAS  PubMed  Google Scholar 

  58. Cicala D, Briganti F, Casale L, Rossi C, Cagini L, Cesarano E, et al. Atraumatic vertebral compression fractures: differential diagnosis between benign osteoporotic and malignant fractures by MRI. Musculoskelet Surg. 2013;97(Suppl 2):S169–79. https://doi.org/10.1007/s12306-013-0277-9.

    Article  PubMed  Google Scholar 

  59. Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics. 2003;23(1):179–87. https://doi.org/10.1148/rg.231025043.

    Article  PubMed  Google Scholar 

  60. Kaup M, Wichmann JL, Scholtz JE, Beeres M, Kromen W, Albrecht MH, et al. Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology. 2016;280(2):510–9. https://doi.org/10.1148/radiol.2016150472.

    Article  PubMed  Google Scholar 

  61. Yuh WT, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology. 1989;172(1):215–8. https://doi.org/10.1148/radiology.172.1.2740506.

    Article  CAS  PubMed  Google Scholar 

  62. Torres C, Hammond I. Computed tomography and magnetic resonance imaging in the differentiation of osteoporotic fractures from neoplastic metastatic fractures. J Clin Densitom. 2016;19(1):63–9. https://doi.org/10.1016/j.jocd.2015.08.008.

    Article  PubMed  Google Scholar 

  63. Baur A, Stabler A, Bruning R, Bartl R, Krodel A, Reiser M, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207(2):349–56. https://doi.org/10.1148/radiology.207.2.9577479.

    Article  CAS  PubMed  Google Scholar 

  64. Balliu E, Vilanova JC, Pelaez I, Puig J, Remollo S, Barcelo C, et al. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol. 2009;69(3):560–6. https://doi.org/10.1016/j.ejrad.2007.11.037.

    Article  CAS  PubMed  Google Scholar 

  65. Maeda M, Sakuma H, Maier SE, Takeda K. Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR Am J Roentgenol. 2003;181(5):1203–9. https://doi.org/10.2214/ajr.181.5.1811203.

    Article  PubMed  Google Scholar 

  66. Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23(1):165–70.

    PubMed  Google Scholar 

  67. Chan JH, Peh WC, Tsui EY, Chau LF, Cheung KK, Chan KB, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002;75(891):207–14. https://doi.org/10.1259/bjr.75.891.750207.

    Article  CAS  PubMed  Google Scholar 

  68. Sung JK, Jee WH, Jung JY, Choi M, Lee SY, Kim YH, et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology. 2014;271(2):488–98. https://doi.org/10.1148/radiol.13130399.

    Article  PubMed  Google Scholar 

  69. Geith T, Schmidt G, Biffar A, Dietrich O, Durr HR, Reiser M, et al. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures. AJR Am J Roentgenol. 2012;199(5):1083–92. https://doi.org/10.2214/AJR.11.8010.

    Article  PubMed  Google Scholar 

  70. Rumpel H, Chong Y, Porter DA, Chan LL. Benign versus metastatic vertebral compression fractures: combined diffusion-weighted MRI and MR spectroscopy aids differentiation. Eur Radiol. 2013;23(2):541–50. https://doi.org/10.1007/s00330-012-2620-1.

    Article  PubMed  Google Scholar 

  71. Rumpel H, Chan LL, Chan LP, Png MA, Tan RK, Lim WE. Vertebrae adjacent to spinal bone lesion are inconsistent reference markers: a magnetic resonance spectroscopic viewpoint. J Magn Reson Imaging. 2006;23(4):574–7. https://doi.org/10.1002/jmri.20531.

    Article  PubMed  Google Scholar 

  72. Baker LL, Goodman SB, Perkash I, Lane B, Enzmann DR. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology. 1990;174(2):495–502. https://doi.org/10.1148/radiology.174.2.2296658.

    Article  CAS  PubMed  Google Scholar 

  73. Lansdown D, Bennet B, Thiel S, Ahmed O, Dixon L, Vokes TJ. Prevalence of vertebral fractures on chest radiographs of elderly African American and Caucasian women. Osteoporos Int. 2011;22(8):2365–71. https://doi.org/10.1007/s00198-010-1452-6.

    Article  CAS  PubMed  Google Scholar 

  74. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90(5):2787–93. https://doi.org/10.1210/jc.2004-1568.

    Article  CAS  PubMed  Google Scholar 

  76. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002;112(4):281–9.

    Article  CAS  PubMed  Google Scholar 

  77. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

  78. Silva BC, Walker MD, Abraham A, Boutroy S, Zhang C, McMahon DJ, et al. Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and white women. J Clin Densitom. 2013;16(4):554–61. https://doi.org/10.1016/j.jocd.2013.07.001.

    Article  PubMed  Google Scholar 

  79. Muschitz C, Kocijan R, Haschka J, Pahr D, Kaider A, Pietschmann P, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone. 2015;79:259–66. https://doi.org/10.1016/j.bone.2015.06.007.

    Article  PubMed  Google Scholar 

  80. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14(3):302–12. https://doi.org/10.1016/j.jocd.2011.05.005.

    Article  PubMed  Google Scholar 

  81. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int. 2013;24(9):2455–60. https://doi.org/10.1007/s00198-013-2316-7.

    Article  CAS  PubMed  Google Scholar 

  82. Iki M, Tamaki J, Kadowaki E, Sato Y, Dongmei N, Winzenrieth R, et al. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res. 2014;29(2):399–407. https://doi.org/10.1002/jbmr.2048.

    Article  PubMed  Google Scholar 

  83. de Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int. 2005;16(12):1713–20. https://doi.org/10.1007/s00198-005-1909-1.

    Article  PubMed  Google Scholar 

  84. Choi YJ, Ock SY, Chung YS. Trabecular bone score (TBS) and TBS-adjusted fracture risk assessment tool are potential supplementary tools for the discrimination of morphometric vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Densitom. 2016; https://doi.org/10.1016/j.jocd.2016.04.001.

  85. Leslie WD, Aubry-Rozier B, Lamy O, Hans D, Manitoba Bone Density P. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98(2):602–9. https://doi.org/10.1210/jc.2012-3118.

    Article  CAS  PubMed  Google Scholar 

  86. • Leib ES, Winzenrieth R. Bone status in glucocorticoid-treated men and women. Osteoporos Int. 2016;27(1):39–48. https://doi.org/10.1007/s00198-015-3211-1. This study showed that trabecular bone score (TBS) was a better predictor for prevalent fracture than areal bone mineral density in patients treated with glucocorticoids.

    Article  CAS  PubMed  Google Scholar 

  87. Su Y, Leung J, Hans D, Lamy O, Kwok T. The added value of trabecular bone score to FRAX(R) to predict major osteoporotic fractures for clinical use in Chinese older people: the Mr. OS and Ms. OS cohort study in Hong Kong. Osteoporos Int. 2016; https://doi.org/10.1007/s00198-016-3741-1.

  88. McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res. 2016;31(5):940–8. https://doi.org/10.1002/jbmr.2734.

    Article  PubMed  Google Scholar 

  89. Schousboe JT, Vo T, Taylor BC, Cawthon PM, Schwartz AV, Bauer DC, et al. Prediction of incident major osteoporotic and hip fractures by trabecular bone score (TBS) and prevalent radiographic vertebral fracture in older men. J Bone Miner Res. 2016;31(3):690–7. https://doi.org/10.1002/jbmr.2713.

    Article  CAS  PubMed  Google Scholar 

  90. McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. Adjusting fracture probability by trabecular bone score. Calcif Tissue Int. 2015;96(6):500–9. https://doi.org/10.1007/s00223-015-9980-x.

    Article  CAS  PubMed  Google Scholar 

  91. Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD Official Positions Part 2: trabecular bone score. J Clin Densitom. 2015;18(3):309–30. https://doi.org/10.1016/j.jocd.2015.06.008.

    Article  PubMed  Google Scholar 

  92. • Graeff C, Marin F, Petto H, Kayser O, Reisinger A, Pena J, et al. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone. 2013;52(2):568–77. https://doi.org/10.1016/j.bone.2012.10.036. This study showed that parameters of microarchitecture as analyzed by high-resolution quantitative computed tomography and strength as computed by finite element analysis were superior to areal bone density in the discrimination between glucocorticoid-treated patients with and without prevealent vertebral fractures.

    Article  CAS  PubMed  Google Scholar 

  93. Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T, et al. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res. 2005;20(10):1828–36. https://doi.org/10.1359/JBMR.050610.

    Article  PubMed  Google Scholar 

  94. Pahr DH, Zysset PK. Finite element-based mechanical assessment of bone quality on the basis of in vivo images. Curr Osteoporos Rep. 2016;14(6):374–85. https://doi.org/10.1007/s11914-016-0335-y.

    Article  PubMed  Google Scholar 

  95. Pahr DH, Schwiedrzik J, Dall'Ara E, Zysset PK. Clinical versus pre-clinical FE models for vertebral body strength predictions. J Mech Behav Biomed Mater. 2014;33:76–83. https://doi.org/10.1016/j.jmbbm.2012.11.018.

    Article  PubMed  Google Scholar 

  96. Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, et al. Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part II. J Clin Densitom. 2015;18(3):359–92. https://doi.org/10.1016/j.jocd.2015.06.011.

    Article  PubMed  Google Scholar 

  97. Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K. Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int. 2009;20(5):801–10. https://doi.org/10.1007/s00198-008-0750-8.

    Article  CAS  PubMed  Google Scholar 

  98. Lewiecki EM, Keaveny TM, Kopperdahl DL, Genant HK, Engelke K, Fuerst T, et al. Once-monthly oral ibandronate improves biomechanical determinants of bone strength in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2009;94(1):171–80. https://doi.org/10.1210/jc.2008-1807.

    Article  CAS  PubMed  Google Scholar 

  99. Graeff C, Chevalier Y, Charlebois M, Varga P, Pahr D, Nickelsen TN, et al. Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. J Bone Miner Res. 2009;24(10):1672–80. https://doi.org/10.1359/jbmr.090416.

    Article  CAS  PubMed  Google Scholar 

  100. Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014;29(1):158–65. https://doi.org/10.1002/jbmr.2024.

    Article  CAS  PubMed  Google Scholar 

  101. Keaveny TM, Bouxsein ML. Theoretical implications of the biomechanical fracture threshold. J Bone Miner Res. 2008;23(10):1541–7. https://doi.org/10.1359/jbmr.080406.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Blake GM, Siddique M, Frost ML, Moore AE, Fogelman I. Imaging of site specific bone turnover in osteoporosis using positron emission tomography. Curr Osteoporos Rep. 2014;12(4):475–85. https://doi.org/10.1007/s11914-014-0231-2.

    Article  PubMed  Google Scholar 

  103. Frost ML, Cook GJ, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res. 2003;18(12):2215–22. https://doi.org/10.1359/jbmr.2003.18.12.2215.

    Article  CAS  Google Scholar 

  104. Frost ML, Moore AE, Siddique M, Blake GM, Laurent D, Borah B, et al. 18F-fluoride PET as a noninvasive imaging biomarker for determining treatment efficacy of bone active agents at the hip: a prospective, randomized, controlled clinical study. J Bone Miner Res. 2013;28(6):1337–47. https://doi.org/10.1002/jbmr.1862.

    Article  CAS  PubMed  Google Scholar 

  105. Frost ML, Siddique M, Blake GM, Moore AE, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res. 2011;26(5):1002–11. https://doi.org/10.1002/jbmr.305.

    Article  CAS  PubMed  Google Scholar 

  106. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41. https://doi.org/10.1056/nejm200105103441904.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryl S. LeBoff.

Ethics declarations

Conflict of Interest

Sharon Chou and Meryl LeBoff declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Therapeutics and Medical Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, S.H., LeBoff, M.S. Vertebral Imaging in the Diagnosis of Osteoporosis: a Clinician’s Perspective. Curr Osteoporos Rep 15, 509–520 (2017). https://doi.org/10.1007/s11914-017-0404-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0404-x

Keywords

Navigation