Skip to main content

Advertisement

Log in

The H-Reflex as a Biomarker for Spinal Disinhibition in Painful Diabetic Neuropathy

  • Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neuropathic pain may arise from multiple mechanisms and locations. Efficacy of current treatments for painful diabetic neuropathy is limited to an unpredictable subset of patients, possibly reflecting diversity of pain generator mechanisms, and there is a lack of targeted treatments for individual patients. This review summarizes preclinical evidence supporting a role for spinal disinhibition in painful diabetic neuropathy, the physiology and pharmacology of rate-dependent depression (RDD) of the spinal H-reflex and the translational potential of using RDD as a biomarker of spinally mediated pain.

Recent Findings

Impaired RDD occurs in animal models of diabetes and was also detected in diabetic patients with painful vs painless neuropathy.

Summary

RDD status can be determined using standard neurophysiological equipment. Loss of RDD may provide a clinical biomarker of spinal disinhibition, thereby enabling a personalized medicine approach to selection of current treatment options and enrichment of future clinical trial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54. https://doi.org/10.2337/dc16-2042.

    Article  CAS  PubMed  Google Scholar 

  2. Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 2011;34(10):2220–4. https://doi.org/10.2337/dc11-1108.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Davies M, Brophy S, Williams R, Taylor A. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care. 2006;29(7):1518–22. https://doi.org/10.2337/dc05-2228.

    Article  PubMed  Google Scholar 

  4. Pruitt J 3rd, Moracho-Vilrriales C, Threatt T, Wagner S, Wu J, Romero-Sandoval EA. Identification, prevalence, and treatment of painful diabetic neuropathy in patients from a rural area in South Carolina. J Pain Res. 2017;10:833–43. https://doi.org/10.2147/JPR.S129139.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A, Group KS. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg Surveys S2 and S3. Pain Med. 2009;10(2):393–400. https://doi.org/10.1111/j.1526-4637.2008.00555.x.

    Article  PubMed  Google Scholar 

  6. Baron R, Tolle TR, Gockel U, Brosz M, Freynhagen R. A cross-sectional cohort survey in 2100 patients with painful diabetic neuropathy and postherpetic neuralgia: differences in demographic data and sensory symptoms. Pain. 2009;146(1–2):34–40. https://doi.org/10.1016/j.pain.2009.06.001.

    Article  PubMed  Google Scholar 

  7. Finnerup NB, Sindrup SH, Jensen TS. Management of painful neuropathies. Handb Clin Neurol. 2013;115:279–90. https://doi.org/10.1016/B978-0-444-52902-2.00017-5.

    Article  Google Scholar 

  8. D'Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth. 2008;101(1):8–16. https://doi.org/10.1093/bja/aen088.

    Article  PubMed  Google Scholar 

  9. Lee-Kubli CA, Calcutt NA. Painful neuropathy: mechanisms. Handb Clin Neurol. 2014;126:533–57. https://doi.org/10.1016/B978-0-444-53480-4.00034-5.

    Article  PubMed  Google Scholar 

  10. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9. https://doi.org/10.1126/science.150.3699.971.

    Article  CAS  PubMed  Google Scholar 

  11. Bohlhalter S, Weinmann O, Mohler H, Fritschy JM. Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci. 1996;16(1):283–97.

    CAS  PubMed  Google Scholar 

  12. Roberts LA, Beyer C, Komisaruk BR. Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci. 1986;39(18):1667–74. https://doi.org/10.1016/0024-3205(86)90164-5.

    Article  CAS  PubMed  Google Scholar 

  13. Sivilotti L, Woolf CJ. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol. 1994;72(1):169–79. https://doi.org/10.1152/jn.1994.72.1.169.

    Article  CAS  PubMed  Google Scholar 

  14. Sorkin LS, Puig S, Jones DL. Spinal bicuculline produces hypersensitivity of dorsal horn neurons: effects of excitatory amino acid antagonists. Pain. 1998;77(2):181–90. https://doi.org/10.1016/S0304-3959(98)00094-3.

    Article  CAS  PubMed  Google Scholar 

  15. Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain. 1989;37(1):111–23. https://doi.org/10.1016/0304-3959(89)90160-7.

    Article  CAS  PubMed  Google Scholar 

  16. Gwak YS, Tan HY, Nam TS, Paik KS, Hulsebosch CE, Leem JW. Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury. J Neurotrauma. 2006;23(7):1111–24. https://doi.org/10.1089/neu.2006.23.1111.

    Article  PubMed  Google Scholar 

  17. Hammond DL, Drower EJ. Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol. 1984;103(1–2):121–5. https://doi.org/10.1016/0014-2999(84)90197-3.

    Article  CAS  PubMed  Google Scholar 

  18. Miletic G, Draganic P, Pankratz MT, Miletic V. Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1. Pain. 2003;105(1–2):347–53. https://doi.org/10.1016/S0304-3959(03)00250-1.

    Article  CAS  PubMed  Google Scholar 

  19. Wilson PR, Yaksh TL. Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol. 1978;51(4):323–30. https://doi.org/10.1016/0014-2999(78)90423-5.

    Article  CAS  PubMed  Google Scholar 

  20. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32(1):1–32. https://doi.org/10.1146/annurev.neuro.051508.135531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. • Prescott SA. Synaptic inhibition and disinhibition in the spinal dorsal horn. Prog Mol Biol Transl Sci. 2015;131:359–83. https://doi.org/10.1016/bs.pmbts.2014.11.008. A clear and conscise recent review of the role of spinal disinhibition in neuropathic pain.

    Article  PubMed  Google Scholar 

  22. Castro-Lopes JM, Tavares I, Coimbra A. GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res. 1993;620(2):287–91. https://doi.org/10.1016/0006-8993(93)90167-L.

    Article  CAS  PubMed  Google Scholar 

  23. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 2002;22(15):6724–31.

    CAS  PubMed  Google Scholar 

  24. Malmberg AB, O'Connor WT, Glennon JC, Cesena R, Calcutt NA. Impaired formalin-evoked changes of spinal amino acid levels in diabetic rats. Brain Res. 2006;1115(1):48–53. https://doi.org/10.1016/j.brainres.2006.07.077.

    Article  CAS  PubMed  Google Scholar 

  25. Jolivalt CG, Lee CA, Ramos KM, Calcutt NA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain. 2008;140(1):48–57. https://doi.org/10.1016/j.pain.2008.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang XL, Zhang HM, Chen SR, Pan HL. Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy. J Physiol. 2007;579(Pt 3):849–61. https://doi.org/10.1113/jphysiol.2006.126102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang XL, Zhang Q, Zhang YZ, Liu YT, Dong R, Wang QJ, et al. Downregulation of GABAB receptors in the spinal cord dorsal horn in diabetic neuropathy. Neurosci Lett. 2011;490(2):112–5. https://doi.org/10.1016/j.neulet.2010.12.038.

    Article  CAS  PubMed  Google Scholar 

  28. Morgado C, Pinto-Ribeiro F, Tavares I. Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats. Neurosci Lett. 2008;438(1):102–6. https://doi.org/10.1016/j.neulet.2008.04.032.

    Article  CAS  PubMed  Google Scholar 

  29. Lee-Kubli CA, Calcutt NA. Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain. 2014;155(2):250–60. https://doi.org/10.1016/j.pain.2013.10.001.

    Article  PubMed  Google Scholar 

  30. •• Marshall AG, Lee-Kubli C, Azmi S, Zhang M, Ferdousi M, Mixcoatl-Zecuatl T, et al. Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes. 2017;66(5):1380–90. https://doi.org/10.2337/db16-1181. The first report of impaired RDD in type 1 diabetic patients with neuropathic pain. Diabetic patients with similar neuropathy but no pain had normal RDD. Preclinical studies extended measures of impaired RDD to rat model of type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  31. • Javdani F, Hollo K, Hegedus K, Kis G, Hegyi Z, Docs K, et al. Differential expression patterns of K(+)/Cl(−) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats. J Comp Neurol. 2015;523(13):1967–83. https://doi.org/10.1002/cne.23774. A thorough demonstration of the exclusive localization of KCC2 to dendrites and neuronal perikarya in the spinal dorsal horn, variability of KCC2 distribution between neurons and its absence from presynaptic membranes.

    Article  CAS  PubMed  Google Scholar 

  32. Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci. 2014;15(10):637–54. https://doi.org/10.1038/nrn3819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424(6951):938–42. https://doi.org/10.1038/nature01868.

    Article  CAS  PubMed  Google Scholar 

  34. • Doyon N, Prescott SA, De Koninck Y. Mild KCC2 hypofunction causes inconspicuous chloride dysregulation that degrades neural coding. Front Cell Neurosci. 2015;9:516. https://doi.org/10.3389/fncel.2015.00516. This paper uses computer simulations to demonstrate that modest deceases in KCC2 function can impede normal neurotransmission. This finding helps address concerns that the detected reduction of spinal KCC2 protein during injury or disease was too small to produce the associated pain phenotype.

    PubMed  Google Scholar 

  35. Watanabe M, Fukuda A. Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci. 2015;9:371. https://doi.org/10.3389/fncel.2015.00371.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–21. https://doi.org/10.1038/nature04223.

    Article  CAS  PubMed  Google Scholar 

  37. Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast. 2013;2013:429815–1. https://doi.org/10.1155/2013/429815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Daulhac L, Mallet C, Courteix C, Etienne M, Duroux E, Privat AM, et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Mol Pharmacol. 2006;70(4):1246–54. https://doi.org/10.1124/mol.106.025478.

    Article  CAS  PubMed  Google Scholar 

  39. Morgado C, Pereira-Terra P, Cruz CD, Tavares I. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord. Diabetes Obes Metab. 2011;13(2):150–9. https://doi.org/10.1111/j.1463-1326.2010.01333.x.

    Article  CAS  PubMed  Google Scholar 

  40. Tsuda M, Ueno H, Kataoka A, Tozaki-Saitoh H, Inoue K. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia. 2008;56(4):378–86. https://doi.org/10.1002/glia.20623.

    Article  PubMed  Google Scholar 

  41. Wodarski R, Clark AK, Grist J, Marchand F, Malcangio M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur J Pain. 2009;13(8):807–11. https://doi.org/10.1016/j.ejpain.2008.09.010.

    Article  CAS  PubMed  Google Scholar 

  42. Obata K, Noguchi K. BDNF in sensory neurons and chronic pain. Neurosci Res. 2006;55(1):1–10. https://doi.org/10.1016/j.neures.2006.01.005.

    Article  CAS  PubMed  Google Scholar 

  43. Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem. 1995;64(3):1231–7.

    Article  CAS  PubMed  Google Scholar 

  44. McCarson KE, Enna SJ. GABA pharmacology: the search for analgesics. Neurochem Res. 2014;39(10):1948–63. https://doi.org/10.1007/s11064-014-1254-x.

    Article  CAS  PubMed  Google Scholar 

  45. Zeilhofer HU, Ralvenius WT, Acuna MA. Restoring the spinal pain gate: GABA(A) receptors as targets for novel analgesics. Adv Pharmacol. 2015;73:71–96. https://doi.org/10.1016/bs.apha.2014.11.007.

    Article  PubMed  Google Scholar 

  46. Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010;16(3):302–7. https://doi.org/10.1038/nm.2107.

    Article  CAS  PubMed  Google Scholar 

  47. Palmieri RM, Ingersoll CD, Hoffman MA. The hoffmann reflex: methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train. 2004;39(3):268–77.

    PubMed  PubMed Central  Google Scholar 

  48. Wager EW Jr, Buerger AA. A linear relationship between H-reflex latency and sensory conduction velocity in diabetic neuropathy. Neurology. 1974;24(8):711–4. https://doi.org/10.1212/WNL.24.8.711.

    Article  PubMed  Google Scholar 

  49. Cliffer KD, Tonra JR, Carson SR, Radley HE, Cavnor C, Lindsay RM, et al. Consistent repeated M- and H-wave recording in the hind limb of rats. Muscle Nerve. 1998;21(11):1405–13. https://doi.org/10.1002/(SICI)1097-4598(199811)21:11<1405::AID-MUS7>3.0.CO;2-D.

    Article  CAS  PubMed  Google Scholar 

  50. Stanley EF. Sensory and motor nerve conduction velocities and the latency of the H reflex during growth of the rat. Exp Neurol. 1981;71(3):497–506. https://doi.org/10.1016/0014-4886(81)90027-3.

    Article  CAS  PubMed  Google Scholar 

  51. Bandaru SP, Liu S, Waxman SG, Tan AM. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J Neurophysiol. 2015;113(5):1598–615. https://doi.org/10.1152/jn.00566.2014.

    Article  PubMed  Google Scholar 

  52. Angel RW, Hofmann WW. The H reflex in normal, spastic, and rigid subjects. Arch Neurol. 1963;9:591–6.

    Article  CAS  PubMed  Google Scholar 

  53. Garcia-Mullin R, Mayer RF. H reflexes in acute and chronic hemiplegia. Brain. 1972;95(3):559–72. https://doi.org/10.1093/brain/95.3.559.

    Article  CAS  PubMed  Google Scholar 

  54. Little JW, Halar EM. H-reflex changes following spinal cord injury. Arch Phys Med Rehabil. 1985;66(1):19–22.

    CAS  PubMed  Google Scholar 

  55. Taylor S, Ashby P, Verrier M. Neurophysiological changes following traumatic spinal lesions in man. J Neurol Neurosurg Psychiatry. 1984;47(10):1102–8. https://doi.org/10.1136/jnnp.47.10.1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Teasdall RD, Park AM, Languth HW, Magladery JW. Electrophysiological studies of reflex activity in patients with lesions of the nervous system. II. Disclosure of normally suppressed monosynaptic reflex discharge of spinal motoneurones by lesions of lower brain-stem and spinal cord. Bull Johns Hopkins Hosp. 1952;91(4):245–56.

    CAS  PubMed  Google Scholar 

  57. Reschke MF, Anderson DJ, Homick JL. Vestibulospinal reflexes as a function of microgravity. Science. 1984;225(4658):212–4. https://doi.org/10.1126/science.6729475.

    Article  CAS  PubMed  Google Scholar 

  58. Ashby P, Verrier M, Warsh JJ, Price KS. Spinal reflexes and the concentrations of 5-HIAA, MHPG, and HVA in lumbar cereborspinal fluid after spinal lesions in man. J Neurol Neurosurg Psychiatry. 1976;39(12):1191–200. https://doi.org/10.1136/jnnp.39.12.1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Field-Fote EC, Brown KM, Lindley SD. Influence of posture and stimulus parameters on post-activation depression of the soleus H-reflex in individuals with chronic spinal cord injury. Neurosci Lett. 2006;410(1):37–41. https://doi.org/10.1016/j.neulet.2006.09.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nielsen J, Petersen N, Ballegaard M, Biering-Sorensen F, Kiehn O. H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects. Exp Brain Res. 1993;97(1):173–6.

    Article  CAS  PubMed  Google Scholar 

  61. Phadke CP, Thompson FJ, Kukulka CG, Nair PM, Bowden MG, Madhavan S, et al. Soleus H-reflex modulation after motor incomplete spinal cord injury: effects of body position and walking speed. J Spinal Cord Med. 2010;33(4):371–8. https://doi.org/10.1080/10790268.2010.11689715.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Misiaszek JE. The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve. 2003;28(2):144–60. https://doi.org/10.1002/mus.10372.

    Article  PubMed  Google Scholar 

  63. Ho SM, Waite PM. Effects of different anesthetics on the paired-pulse depression of the h reflex in adult rat. Exp Neurol. 2002;177(2):494–502. https://doi.org/10.1006/exnr.2002.8013.

    Article  CAS  PubMed  Google Scholar 

  64. Ishikawa K, Ott K, Porter RW, Stuart D. Low frequency depression of the H wave in normal and spinal man. Exp Neurol. 1966;15(1):140–56. https://doi.org/10.1016/0014-4886(66)90039-2.

    Article  CAS  PubMed  Google Scholar 

  65. Kakinohana O, Hefferan MP, Nakamura S, Kakinohana M, Galik J, Tomori Z, et al. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience. 2006;141(3):1569–83. https://doi.org/10.1016/j.neuroscience.2006.04.083.

    Article  CAS  PubMed  Google Scholar 

  66. Lloyd DP, Wilson VJ. Reflex depression in rhythmically active monosynaptic reflex pathways. J Gen Physiol. 1957;40(3):409–26. https://doi.org/10.1085/jgp.40.3.409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Olsen PZ, Diamantopoulos E. Excitability of spinal motor neurones in normal subjects and patients with spasticity, Parkinsonian rigidity, and cerebellar hypotonia. J Neurol Neurosurg Psychiatry. 1967;30(4):325–31. https://doi.org/10.1136/jnnp.30.4.325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mukherjee A, Chakravarty A. Spasticity mechanisms—for the clinician. Front Neurol. 2010;1:149. https://doi.org/10.3389/fneur.2010.00149.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Matsushita A, Smith CM. Spinal cord function in postischemic rigidity in the rat. Brain Res. 1970;19(3):395–410. https://doi.org/10.1016/0006-8993(70)90382-3.

    Article  CAS  PubMed  Google Scholar 

  70. Trimble MH, Kukulka CG, Behrman AL. The effect of treadmill gait training on low-frequency depression of the soleus H-reflex: comparison of a spinal cord injured man to normal subjects. Neurosci Lett. 1998;246(3):186–8. https://doi.org/10.1016/S0304-3940(98)00259-6.

    Article  CAS  PubMed  Google Scholar 

  71. Metz J, Goode DJ, Meltzer HY. Descriptive studies of H-reflex recovery curves in psychiatric patients. Psychol Med. 1980;10(3):541–8. https://doi.org/10.1017/S0033291700047437.

    Article  CAS  PubMed  Google Scholar 

  72. Pivik RT, Mercier L. Spinal motoneuronal excitability in hyperkinesis: H-reflex recovery function and homosynaptic depression during wakefulness. J Clin Neuropsychol. 1981;3(3):215–36. https://doi.org/10.1080/01688638108403127.

    Article  CAS  PubMed  Google Scholar 

  73. Sabbahi M, Etnyre B, Al-Jawayed I, Jankovic J. H-reflex recovery curves differentiate essential tremor, Parkinson’s disease, and the combination of essential tremor and Parkinson’s disease. J Clin Neurophysiol. 2002;19(3):245–51. https://doi.org/10.1097/00004691-200206000-00008.

    Article  PubMed  Google Scholar 

  74. Pierrot-Deseilligny E, Mazevet D. The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin. 2000;30(2):67–80. https://doi.org/10.1016/S0987-7053(00)00062-9.

    Article  CAS  PubMed  Google Scholar 

  75. Curtis DR, Eccles JC. Synaptic action during and after repetitive stimulation. J Physiol. 1960;150(2):374–98. https://doi.org/10.1113/jphysiol.1960.sp006393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Decandia M, Provini L, Taborikova H. Mechanisms of the reflex discharge depression in the spinal motoneurone during repetitive orthodromic stimulation. Brain Res. 1967;4(2):284–91. https://doi.org/10.1016/0006-8993(67)90010-8.

    Article  CAS  PubMed  Google Scholar 

  77. Fuortes MG, Frank K, Becker MC. Steps in the production of motoneuron spikes. J Gen Physiol. 1957;40(5):735–52. https://doi.org/10.1085/jgp.40.5.735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996;108(3):450–62.

    Article  CAS  PubMed  Google Scholar 

  79. Bos R, Sadlaoud K, Boulenguez P, Buttigieg D, Liabeuf S, Brocard C, et al. Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci U S A. 2013;110(1):348–53. https://doi.org/10.1073/pnas.1213680110.

    Article  CAS  PubMed  Google Scholar 

  80. Mayer RF, Mawdsley C. Studies in man and cat of the significance of the H wave. J Neurol Neurosurg Psychiatry. 1965;28(3):201–11. https://doi.org/10.1136/jnnp.28.3.201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Burke D, Gandevia SC, McKeon B. The afferent volleys responsible for spinal proprioceptive reflexes in man. J Physiol. 1983;339(1):535–52. https://doi.org/10.1113/jphysiol.1983.sp014732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meinck HM. Occurrence of the H reflex and the F wave in the rat. Electroencephalogr Clin Neurophysiol. 1976;41(5):530–3. https://doi.org/10.1016/0013-4694(76)90064-X.

    Article  CAS  PubMed  Google Scholar 

  83. Jankowska E, Johannisson T, Lipski J. Common interneurones in reflex pathways from group 1a and 1b afferents of ankle extensors in the cat. J Physiol. 1981;310(1):381–402. https://doi.org/10.1113/jphysiol.1981.sp013556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jankowska E, McCrea D, Mackel R. Oligosynaptic excitation of motoneurones by impulses in group Ia muscle spindle afferents in the cat. J Physiol. 1981;316(1):411–25. https://doi.org/10.1113/jphysiol.1981.sp013797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burke D, Gandevia SC, McKeon B. Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J Neurophysiol. 1984;52(3):435–48. https://doi.org/10.1152/jn.1984.52.3.435.

    Article  CAS  PubMed  Google Scholar 

  86. Fukushima Y, Yamashita N, Shimada Y. Facilitation of H-reflex by homonymous Ia-afferent fibers in man. J Neurophysiol. 1982;48(5):1079–88. https://doi.org/10.1152/jn.1982.48.5.1079.

    Article  CAS  PubMed  Google Scholar 

  87. Magladery JW. Some observations on spinal reflexes in man. Pflugers Arch Gesamte Physiol Menschen Tiere. 1955;261(4):302–21. https://doi.org/10.1007/BF00364122.

    Article  CAS  PubMed  Google Scholar 

  88. Gelfan S. Altered spinal motoneurons in dogs with experimental hind-lamb rigidity. J Neurophysiol. 1966;29(4):583–611. https://doi.org/10.1152/jn.1966.29.4.583.

    Article  CAS  PubMed  Google Scholar 

  89. Cote MP, Azzam GA, Lemay MA, Zhukareva V, Houle JD. Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury. J Neurotrauma. 2011;28(2):299–309. https://doi.org/10.1089/neu.2010.1594.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Garrison MK, Yates CC, Reese NB, Skinner RD, Garcia-Rill E. Wind-up of stretch reflexes as a measure of spasticity in chronic spinalized rats: the effects of passive exercise and modafinil. Exp Neurol. 2011;227(1):104–9. https://doi.org/10.1016/j.expneurol.2010.09.019.

    Article  PubMed  Google Scholar 

  91. Ollivier-Lanvin K, Keeler BE, Siegfried R, Houle JD, Lemay MA. Proprioceptive neuropathy affects normalization of the H-reflex by exercise after spinal cord injury. Exp Neurol. 2010;221(1):198–205. https://doi.org/10.1016/j.expneurol.2009.10.023.

    Article  PubMed  Google Scholar 

  92. Reese NB, Skinner RD, Mitchell D, Yates C, Barnes CN, Kiser TS, et al. Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats. Spinal Cord. 2006;44(1):28–34. https://doi.org/10.1038/sj.sc.3101810.

    Article  CAS  PubMed  Google Scholar 

  93. Yates CC, Charlesworth A, Reese NB, Skinner RD, Garcia-Rill E. The effects of passive exercise therapy initiated prior to or after the development of hyperreflexia following spinal transection. Exp Neurol. 2008;213(2):405–9. https://doi.org/10.1016/j.expneurol.2008.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cote MP, Gandhi S, Zambrotta M, Houle JD. Exercise modulates chloride homeostasis after spinal cord injury. J Neurosci. 2014;34(27):8976–87. https://doi.org/10.1523/JNEUROSCI.0678-14.2014.

    Article  CAS  PubMed  Google Scholar 

  95. Eccles JC, Schmidt RF, Willis WD. Presynaptic inhibition of the spinal monosynaptic reflex pathway. J Physiol. 1962;161(2):282–97. https://doi.org/10.1113/jphysiol.1962.sp006886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stuart GJ, Redman SJ. The role of GABAA and GABAB receptors in presynaptic inhibition of Ia EPSPs in cat spinal motoneurones. J Physiol. 1992;447(1):675–92. https://doi.org/10.1113/jphysiol.1992.sp019023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Willis WD. John Eccles’ studies of spinal cord presynaptic inhibition. Prog Neurobiol. 2006;78(3–5):189–214. https://doi.org/10.1016/j.pneurobio.2006.02.007.

    Article  PubMed  Google Scholar 

  98. Duke M, Advokat C. Pentobarbital-induced modulation of flexor and H-reflexes in spinal rats. Brain Res. 2000;881(2):217–21. https://doi.org/10.1016/S0006-8993(00)02810-9.

    Article  CAS  PubMed  Google Scholar 

  99. Kakinohana O, Hefferan MP, Miyanohara A, Nejime T, Marsala S, Juhas S, et al. Combinational spinal GAD65 gene delivery and systemic GABA-mimetic treatment for modulation of spasticity. PLoS One. 2012;7(1):e30561. https://doi.org/10.1371/journal.pone.0030561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Abbruzzese G. The medical management of spasticity. Eur J Neurol. 2002;9(Suppl 1):30–4; discussion 53-61. https://doi.org/10.1046/j.1468-1331.2002.0090s1030.x.

    Article  PubMed  Google Scholar 

  101. Macdonell RA, Talalla A, Swash M, Grundy D. Intrathecal baclofen and the H-reflex. J Neurol Neurosurg Psychiatry. 1989;52(9):1110–2. https://doi.org/10.1136/jnnp.52.9.1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee S, Toda T, Kiyama H, Yamashita T. Weakened rate-dependent depression of Hoffmann’s reflex and increased motoneuron hyperactivity after motor cortical infarction in mice. Cell Death Dis. 2014;5(1):e1007. https://doi.org/10.1038/cddis.2013.544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Azouvi P, Roby-Brami A, Biraben A, Thiebaut JB, Thurel C, Bussel B. Effect of intrathecal baclofen on the monosynaptic reflex in humans: evidence for a postsynaptic action. J Neurol Neurosurg Psychiatry. 1993;56(5):515–9. https://doi.org/10.1136/jnnp.56.5.515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Corleto JA, Bravo-Hernandez M, Kamizato K, Kakinohana O, Santucci C, Navarro MR, et al. Thoracic 9 spinal transection-induced model of muscle spasticity in the rat: a systematic electrophysiological and histopathological characterization. PLoS One. 2015;10(12):e0144642. https://doi.org/10.1371/journal.pone.0144642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Dachy B, Dan B. Electrophysiological assessment of the effect of intrathecal baclofen in dystonic children. Clin Neurophysiol. 2004;115(4):774–8. https://doi.org/10.1016/j.clinph.2003.11.008.

    Article  CAS  PubMed  Google Scholar 

  106. Liu H, Skinner RD, Arfaj A, Yates C, Reese NB, Williams K, et al. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection. Brain Res Bull. 2010;83(5):262–5. https://doi.org/10.1016/j.brainresbull.2010.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yates CC, Charlesworth A, Reese NB, Ishida K, Skinner RD, Garcia-Rill E. Modafinil normalized hyperreflexia after spinal transection in adult rats. Spinal Cord. 2009;47(6):481–5. https://doi.org/10.1038/sc.2008.154.

    Article  CAS  PubMed  Google Scholar 

  108. Metz JT, Holcomb HH, Meltzer HY. Effect of 5-hydroxytryptophan on H-reflex recovery curves in normal subjects and patients with affective disorders. Biol Psychiatry. 1988;23(6):602–11. https://doi.org/10.1016/0006-3223(88)90007-8.

    Article  CAS  PubMed  Google Scholar 

  109. Ryu Y, Ogata T, Nagao M, Kitamura T, Morioka K, Ichihara Y, et al. The swimming test is effective for evaluating spasticity after contusive spinal cord injury. PLoS One. 2017;12(2):e0171937. https://doi.org/10.1371/journal.pone.0171937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bennett GJ, Liu GK, Xiao WH, Jin HW, Siau C. Terminal arbor degeneration—a novel lesion produced by the antineoplastic agent paclitaxel. Eur J Neurosci. 2011;33(9):1667–76. https://doi.org/10.1111/j.1460-9568.2011.07652.x.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Xiao WH, Bennett GJ. Chemotherapy-evoked neuropathic pain: abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine. Pain. 2008;135(3):262–70. https://doi.org/10.1016/j.pain.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  112. Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain. 1996;68(2–3):293–9. https://doi.org/10.1016/S0304-3959(96)03201-0.

    Article  CAS  PubMed  Google Scholar 

  113. • Jolivalt CG, Rodriguez M, Wahren J, Calcutt NA. Efficacy of a long-acting C-peptide analogue against peripheral neuropathy in streptozotocin-diabetic mice. Diabetes Obes Metab. 2015;17(8):781–8. https://doi.org/10.1111/dom.12477. C-peptide, a product of pro-insulin processing, has neuroprotective properties in diabetic mice including preventing loss of RDD. A first demonstration that a systemically delivered therapy can protect RDD, as opposed to acute pharmacological manipulation of RDD with spinally delivered drugs.

    Article  CAS  PubMed  Google Scholar 

  114. Sultan A, Gaskell H, Derry S, Moore RA. Duloxetine for painful diabetic neuropathy and fibromyalgia pain: systematic review of randomised trials. BMC Neurol. 2008;8(1):29. https://doi.org/10.1186/1471-2377-8-29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Mixcoatl-Zecuatl T, Jolivalt CG. A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br J Pharmacol. 2011;164(1):159–69. https://doi.org/10.1111/j.1476-5381.2011.01334.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gozariu M, Roth V, Keime F, Le Bars D, Willer JC. An electrophysiological investigation into the monosynaptic H-reflex in the rat. Brain Res. 1998;782(1–2):343–7. https://doi.org/10.1016/S0006-8993(97)01402-9.

    Article  CAS  PubMed  Google Scholar 

  117. Thompson FJ, Reier PJ, Lucas CC, Parmer R. Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord. J Neurophysiol. 1992;68(5):1473–86. https://doi.org/10.1152/jn.1992.68.5.1473.

    Article  CAS  PubMed  Google Scholar 

  118. Chen X, Graham J, Dabbah MA, Petropoulos IN, Ponirakis G, Asghar O, et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care. 2015;38(6):1138–44. https://doi.org/10.2337/dc14-2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. De Clerck EE, Schouten JS, Berendschot TT, Kessels AG, Nuijts RM, Beckers HJ, et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol. 2015;3(8):653–63. https://doi.org/10.1016/S2213-8587(15)00136-9.

    Article  PubMed  Google Scholar 

  120. Jiang MS, Yuan Y, Gu ZX, Zhuang SL. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol. 2016;100(1):9–14. https://doi.org/10.1136/bjophthalmol-2014-306038.

    Article  PubMed  Google Scholar 

  121. Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56(8):2148–54. https://doi.org/10.2337/db07-0285.

    Article  CAS  PubMed  Google Scholar 

  122. Tavakoli M, Quattrini C, Abbott C, Kallinikos P, Marshall A, Finnigan J, et al. Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care. 2010;33(8):1792–7. https://doi.org/10.2337/dc10-0253.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Millan-Guerrero R, Trujillo-Hernandez B, Isais-Millan S, Prieto-Diaz-Chavez E, Vasquez C, Caballero-Hoyos JR, et al. H-reflex and clinical examination in the diagnosis of diabetic polyneuropathy. J Int Med Res. 2012;40(2):694–700. https://doi.org/10.1177/147323001204000233.

    Article  PubMed  Google Scholar 

  124. Burke D, Adams RW, Skuse NF. The effects of voluntary contraction on the H reflex of human limb muscles. Brain. 1989;112(Pt 2):417–33. https://doi.org/10.1093/brain/112.2.417.

    Article  PubMed  Google Scholar 

  125. Skljarevski V, Ramadan NM. The nociceptive flexion reflex in humans—review article. Pain. 2002;96(1–2):3–8. https://doi.org/10.1016/S0304-3959(02)00018-0.

    Article  CAS  PubMed  Google Scholar 

  126. von Dincklage F, Olbrich H, Baars JH, Rehberg B. Habituation of the nociceptive flexion reflex is dependent on inter-stimulus interval and stimulus intensity. J Clin Neurosci. 2013;20(6):848–50. https://doi.org/10.1016/j.jocn.2012.07.013.

    Article  Google Scholar 

  127. Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012;153(6):1193–8. https://doi.org/10.1016/j.pain.2012.02.021.

    Article  CAS  PubMed  Google Scholar 

  128. Todorovic SM. Painful diabetic neuropathy: prevention or suppression? Int Rev Neurobiol. 2016;127:211–25. https://doi.org/10.1016/bs.irn.2016.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study is supported by National Institutes for Health awards DK057629 (NAC), DP3DK108245 (NAC), and DK081082 (NAC and RAM) and American Diabetes Association Award 1-17-ICTS-062 (AGM, NAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel A. Calcutt.

Ethics declarations

Conflict of Interest

Corinne Lee-Kubli, Andrew G. Marshall, Rayaz A. Malik, and Nigel A. Calcutt declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Previously unpublished data (Fig. 1) was collected by Corinne Lee-Kubli and Nigel Calcutt using the UCSD IACUC-approved protocol S-02059R.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Neuropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee-Kubli, C., Marshall, A.G., Malik, R.A. et al. The H-Reflex as a Biomarker for Spinal Disinhibition in Painful Diabetic Neuropathy. Curr Diab Rep 18, 1 (2018). https://doi.org/10.1007/s11892-018-0969-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-0969-5

Keywords

Navigation