Skip to main content
Log in

Mechanisms and Treatment of Dyslipidemia in Diabetes

  • Diabetes and Cardiovascular Disease (D Bruemmer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Type 2 diabetes mellitus is widespread throughout the world and is a powerful risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). This manuscript explored the mechanisms underlying dyslipidemia in type 2 diabetes as well as currently available treatment options and guideline recommendations.

Recent Findings

Type 2 diabetes is associated with a characteristic pattern of dyslipidemia, often termed diabetic dyslipidemia. Patients with type 2 diabetes often present with low HDL levels, elevated levels of small dense LDL particles, and elevated triglyceride levels. LDL lowering is the cornerstone of managing diabetic dyslipidemia, and statins are the mainstay of therapy. The cholesterol absorption inhibitor ezetimibe and PCSK9 inhibitors have also been shown to lower risk in patients with diabetes. Recently, the eicosapentaenoic (EPA) only n-3 fatty acid, icosapent ethyl, has also shown benefit for cardiovascular risk reduction in patients with diabetes. To date, no agents targeting HDL increase have shown cardiovascular benefit in patients on background statin therapy.

Summary

Diabetic dyslipidemia is significant cardiovascular disease risk factor, and LDL-lowering therapy with statins, PCSK9 inhibitors, and ezetimibe continues to be mainstay therapy to reduce cardiovascular risk. Future studies targeting low HDL and high triglycerides levels associated with type 2 diabetes could provide additional novel therapies to manage diabetic dyslipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Virani SS. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  PubMed  Google Scholar 

  2. Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 23(2):201–29. https://doi.org/10.1210/edrv.23.2.0461.

  3. Olefsky JM, Farquhar JW, Reaven GM. Reappraisal of the role of insulin in hypertriglyceridemia. Am J Med. 1974;57(4):551–60. https://doi.org/10.1016/0002-9343(74)90006-0.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis GF, Uffelman KD, Szeto, Steiner G. Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apo B production in normal weight and obese individuals. Diabetes. 1993;42:833–942. https://doi.org/10.2337/diab.42.6.833.

    Article  CAS  PubMed  Google Scholar 

  5. Miyashita Y, Shirai K, Itoh Y, Sasaki H, Totsuka M, Murano T, et al. Low lipoprotein lipase mass in preheparin serum of type 2 diabetes mellitus patients and its recovery with insulin therapy. Diabetes Res Clin Pract. 2002;56(3):181–7. https://doi.org/10.1016/s0168-8227(01)00369-2.

    Article  CAS  PubMed  Google Scholar 

  6. Sivan E, Boden G. Free fatty acids, insulin resistance, and pregnancy. Curr Diab Rep. 2003;3(4):319–22. https://doi.org/10.1007/s11892-003-0024-y.

    Article  PubMed  Google Scholar 

  7. Krauss RM. Atherogenicity of triglyceride-rich lipoproteins. Am J Cardiol. 1998;81(4A):13B–7B. https://doi.org/10.1016/s0002-9149(98)00032-0.

    Article  CAS  PubMed  Google Scholar 

  8. Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest. 1993;92(1):141–6. https://doi.org/10.1172/JCI116541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toft-Petersen AP, Tilsted HH, Aarøe J, Rasmussen K, Christensen T, Griffin BA, et al. Small dense LDL particles--a predictor of coronary artery disease evaluated by invasive and CT-based techniques: a case-control study. Lipids Health Dis. 2011;10:21. https://doi.org/10.1186/1476-511X-10-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Superko HR. Small, dense, low-density lipoprotein and atherosclerosis. Curr Atheroscler Rep. 2000;2:226–31. https://doi.org/10.1007/s11883-000-0024-1.

    Article  CAS  PubMed  Google Scholar 

  11. Parhofer KG. Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes Metab J. 2015;39(5):353–62. https://doi.org/10.4093/dmj.2015.39.5.353.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. 2017;8(1):1–8. Published 2017 Dec 12. https://doi.org/10.1002/cphy.c170012.

    Article  PubMed  PubMed Central  Google Scholar 

  13. De Koster J, Nelli RK, Strieder-Barboza C, et al. The contribution of hormone sensitive lipase to adipose tissue lipolysis and its regulation by insulin in periparturient dairy cows. Sci Rep. 2018;8(1):13378. https://doi.org/10.1038/s41598-018-31582-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hurtado MD, Adams JD, Laurenti MC, Man CD, Cobelli C, Rizza RA, et al. The relationship of fasting free fatty acids, adipose tissue, insulin resistance, and fasting glucose concentrations with subsequent ß-cell function in nondiabetic subjects. Diabetes. 2018;67(Supplement 1). https://doi.org/10.2337/db18-1812-P.

  15. Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2003;111(3):121–4. https://doi.org/10.1055/s-2003-39781.

    Article  CAS  PubMed  Google Scholar 

  16. Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J Lipid Res. 2003;44(7):1279–86. https://doi.org/10.1194/jlr.R200017-JLR200.

    Article  CAS  PubMed  Google Scholar 

  17. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  CAS  PubMed  Google Scholar 

  18. Diabetes Prevention Program Outcomes Study Research Group, Orchard TJ, Temprosa M, et al. Long-term effects of the Diabetes Prevention Program interventions on cardiovascular risk factors: a report from the DPP Outcomes Study. Diabet Med. 2013;30(1):46–55. https://doi.org/10.1111/j.1464-5491.2012.03750.x.

    Article  Google Scholar 

  19. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082–143. https://doi.org/10.1161/CIR.0000000000000625.

    Article  PubMed  Google Scholar 

  20. Cholesterol Treatment Trialists' (CTT) Collaborators, Kearney PM, Blackwell L, Collins R, Keech A, Simes J, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25. https://doi.org/10.1016/S0140-6736(08)60104-X.

    Article  CAS  Google Scholar 

  21. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97. https://doi.org/10.1056/NEJMoa1410489.

    Article  CAS  PubMed  Google Scholar 

  22. •• Giugliano RP, Cannon CP, Blazing MA, Nicolau JC, Corbalán R, Špinar J, et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation. 2018;137(15):1571–82. https://doi.org/10.1161/CIRCULATIONAHA.117.030950Findings of this study showed the benefit of adding ezetimibe to statin therapy was enhanced in patient with diabetes and in high-risk patients without diabetes.

    Article  CAS  PubMed  Google Scholar 

  23. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. On behalf of the FOURIER steering committee and investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  PubMed  Google Scholar 

  24. •• Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):941–50. https://doi.org/10.1016/S2213-8587(17)30313Findings from this study showed that PCSK 9 inhibition treatment with evolocumab significantly reduced cardiovascular risk in patients with and without diabetes without worsening glycaemia.

    Article  CAS  PubMed  Google Scholar 

  25. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107. https://doi.org/10.1056/NEJMoa1801174.

    Article  CAS  PubMed  Google Scholar 

  26. Ray KK, Schwartz GG, et al. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(8):618–28. https://doi.org/10.1016/S2213-8587(19)30158-5.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenson RS, Davidson MH, Hirsh BJ, Kathiresan S, Gaudet D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2014;64(23):2525–40. https://doi.org/10.1016/j.jacc.2014.09.042.

    Article  CAS  PubMed  Google Scholar 

  28. Grundy SM, Mok HY, Zech L, Berman M. Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J Lipid Res. 1981;22(1):24–36.

    Article  CAS  Google Scholar 

  29. Alexopoulos AS, Qamar A, Hutchins K, Crowley MJ, Batch BC, Guyton JR. Triglycerides: emerging targets in diabetes care? Review of moderate hypertriglyceridemia in diabetes. Curr Diab Rep. 2019;19(4):13. https://doi.org/10.1007/s11892-019-1136-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Skulas-Ray AC, Wilson PWF, Harris WS, Brinton EA, Kris-Etherton PM, Richter CK, et al. Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association 19 Aug 2019. Circulation. 2019;140:e673–91. https://doi.org/10.1161/CIR.0000000000000709.

    Article  CAS  PubMed  Google Scholar 

  31. •• Bhatt DL, Steg G, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22. https://doi.org/10.1056/NEJMoa1812792Findings from this study suggest patients with diabetes and elevated triglycerides treated with a statin, icosapent ethyl was found to substantially reduce the burden of first, subsequent, and total ischemic events.

    Article  CAS  PubMed  Google Scholar 

  32. Sheikh O, Vande Hei AG, Battisha A, Hammad T, Pham S, Chilton R. Cardiovascular, electrophysiologic, and hematologic effects of omega-3 fatty acids beyond reducing hypertriglyceridemia: as it pertains to the recently published REDUCE-IT trial. Cardiovasc Diabetol. 2019;18(1):84. https://doi.org/10.1186/s12933-019-0887-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357:1301–10. https://doi.org/10.1056/NEJMoa064278.

    Article  CAS  PubMed  Google Scholar 

  34. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79(1):8–15. https://doi.org/10.1161/01.cir.79.1.8.

    Article  CAS  PubMed  Google Scholar 

  35. Assmann G, Schulte H. The Prospective Cardiovascular Munster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J. 1988;116(6):1713–24. https://doi.org/10.1016/0002-8703(88)90220-7.

    Article  CAS  PubMed  Google Scholar 

  36. The AIM-HIGH Investigator. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67. https://doi.org/10.1056/NEJMoa1107579.

    Article  CAS  Google Scholar 

  37. The HPS2-THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12. https://doi.org/10.1056/NEJMoa1300955.

    Article  CAS  Google Scholar 

  38. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. ILLUMINATE investigators. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22. https://doi.org/10.1056/NEJMoa0706628.

    Article  CAS  PubMed  Google Scholar 

  39. Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Fogelman AM. HDL as a biomarker, potential therapeutic target, and therapy. Diabetes. 2009;58(12):2711–7. https://doi.org/10.2337/db09-053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol E. Watson.

Ethics declarations

Conflict of Interest

Dr. Watson reports other from Amarin, Amgen, and Esperion.

The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahiru, E., Hsiao, R., Phillipson, D. et al. Mechanisms and Treatment of Dyslipidemia in Diabetes. Curr Cardiol Rep 23, 26 (2021). https://doi.org/10.1007/s11886-021-01455-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01455-w

Keywords

Navigation