Skip to main content
Log in

Homomorphisms with small bound between Fourier algebras

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Inspired by Kalton and Wood’s work on group algebras, we describe almost completely contractive algebra homomorphisms from Fourier algebras into Fourier–Stieltjes algebras (endowed with their canonical operator space structure). We also prove that two locally compact groups are isomorphic if and only if there exists an algebra isomorphism T between the associated Fourier algebras (resp. Fourier–Stieltjes algebras) with completely bounded norm \({\left\| T \right\|_{cb}} < \sqrt {3/2} \left( {{\text{resp}}{\text{.}}{{\left\| T \right\|}_{cb}} < \sqrt {5/2} } \right)\) . We show similar results involving the norm distortion ‖T‖‖T −1‖ with universal but non-explicit bound. Our results subsume Walter’s well-known structural theorems and also Lau’s theorem on the second conjugate of Fourier algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205–210.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Benyamini, Near isometries in the class of L 1-preduals, Israel J. Math. 20 (1975), 275–281.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. P. Blecher and C. Le Merdy, Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, Vol. 30, The Clarendon Press, Oxford University Press, Oxford, 2004, Oxford Science Publications.

    Book  MATH  Google Scholar 

  4. N. P. Brown and N. Ozawa, C*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, Vol. 88, American Mathematical Society, Providence, RI, 2008.

    Book  MATH  Google Scholar 

  5. M. Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 1062–1066.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. G. Effros and Z.-J. Ruan, Operator spaces, London Mathematical Society Monographs. New Series, Vol. 23, The Clarendon Press, Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  7. P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Ge and D. Hadwin, Ultraproducts of C*-algebras, in Recent advances in operator theory and related topics (Szeged, 1999), Oper. Theory Adv. Appl., Vol. 127, Birkhäuser, Basel, 2001, pp. 305–326.

    Chapter  Google Scholar 

  9. M. Ilie and N. Spronk, Completely bounded homomorphisms of the Fourier algebras, J. Funct. Anal. 225 (2005), 480–499.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. E. Johnson, Isometric isomorphisms of measure algebras, Proc. Amer. Math. Soc. 15 (1964), 186–188.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Junge, Z.-J. Ruan and D. Sherman, A classification for 2-isometries of noncommutative L p-spaces, Israel J. Math. 150 (2005), 285–314.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. V. Kadison, Isometries of operator algebras, Ann. Of Math. (2) 54 (1951), 325–338.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. J. Kalton and G. V. Wood, Homomorphisms of group algebras with norm less than √2, Pacific J. Math. 62 (1976), 439–460.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. T. M. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, Trans. Amer. Math. Soc. 267 (1981), 53–63.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Livshits, A note on 0-1 Schur multipliers, Linear Algebra Appl. 222 (1995), 15–22.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, Vol. 78, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  17. H. L. Pham, Contractive homomorphisms of the Fourier algebras, Bull. Lond. Math. Soc. 42 (2010), 937–947.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series, Vol. 294, Cambridge University Press, Cambridge, 2003.

    Book  MATH  Google Scholar 

  19. R. Rigelhof, Norm decreasing homomorphisms of measure algebras, Trans. Amer.Math. Soc. 136 (1969), 361–371.

    Article  MathSciNet  MATH  Google Scholar 

  20. Z.-J. Ruan, The operator amenability of A(G), Amer. J. Math. 117 (1995), 1449–1474.

    Article  MathSciNet  MATH  Google Scholar 

  21. A.-M. P. Stan, On idempotents of completely bounded multipliers of the Fourier algebra A(G), Indiana Univ. Math. J. 58 (2009), 523–535.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. E. Walter, W*-algebras and nonabelian harmonic analysis, J. Functional Analysis 11 (1972), 17–38.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. G. Wendel, On isometric isomorphism of group algebras, Pacific J. Math. 1 (1951), 305–311.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251–261.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Roydor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, Y., Roydor, J. Homomorphisms with small bound between Fourier algebras. Isr. J. Math. 217, 283–301 (2017). https://doi.org/10.1007/s11856-017-1446-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1446-6

Navigation