Skip to main content
Log in

Maximum production of methanol in a pilot-scale process

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mathematical models for both bench- and pilot-scale methanol synthesis reactors were developed by estimating the overall heat transfer coefficients due to different heat transfer characteristics, while the effectiveness factor was fixed because the same catalysts were used in both reactors. The overall heat transfer coefficient of a pilot-scale reactor was approximately twice that of a bench-scale reactor, while the estimate from the correlation reported for the heat transfer coefficient was 1.8-times higher, indicating that the values determined in the present study are effective. The model showed that the maximum methanol production rate of approximately 16 tons per day was achievable with peak temperature maintained below 250 °C in the open-loop case. Meanwhile, when the recycle was used to prevent the loss of unreacted gas, peak temperature and production rate decreased due to low CO and CO2 fraction in the recycled stream at the same space velocity as the open-loop operation. Further analysis showed that, since the reaction was in the kinetic regime, the production rate could be maximized up to 18.7 tons per day by increasing the feed flowrate and inlet temperature despite thermodynamically exothermic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Olah, Angew. Chem. Int. Ed., 44, 2636 (2005).

    Article  CAS  Google Scholar 

  2. G. A. Olah and G. K. S. Prakash, US Patent (US7608743 B2) (2009).

    Google Scholar 

  3. B. Denise, R. P. A. Sneeden and C. Hamon, J. Mol. Catal., 17, 359 (1982).

    Article  CAS  Google Scholar 

  4. P. Mizsey, E. Newson, T. B. Truong and P. Hottinger, Appl. Catal. A: Gen., 213, 233 (2001).

    Article  CAS  Google Scholar 

  5. M. Sedighi, M. Ghasemi and A. Jahangiri, Korean J. Chem. Eng., 34, 997 (2017).

    Article  CAS  Google Scholar 

  6. H. W. Lim, M. J. Park, S. H. Kang, H. J. Chae, J. W. Bae and K. W. Jun, Ind. Eng. Chem. Res., 48, 10448 (2009).

    Article  CAS  Google Scholar 

  7. J. Toyir, P. R. r. de la Piscina, J. L. G. Fierro and N. s. Homs, Appl. Catal. B: Environ., 29, 207 (2001).

    Article  CAS  Google Scholar 

  8. J. Wu, S. Luo, J. Toyir, M. Saito, M. Takeuchi and T. Watanabe, Catal. Today, 45, 215 (1998).

    Article  CAS  Google Scholar 

  9. K. Klier, Adv. Catal., 31, 243 (1982).

    CAS  Google Scholar 

  10. G. Natta, in Catalysis, P. H. Emmett Eds., Reinhold, New York (1955).

    Google Scholar 

  11. M. Takagawa and M. Ohsugi, J. Catal., 107, 161 (1987).

    Article  CAS  Google Scholar 

  12. M. Peter, M. B. Fichtl, H. Ruland, S. Kaluza, M. Muhler and O. Hinrichsen, Chem. Eng. J., 203, 480 (2012).

    Article  CAS  Google Scholar 

  13. N. Park, M. J. Park, Y. J. Lee, K. S. Ha and K.W. Jun, Fuel Process. Technol., 125, 139 (2014).

    Article  CAS  Google Scholar 

  14. D. Kopač, M. Huš, M. Ogrizek and B. Likozar, J. Phys. Chem. C, 121, 17941 (2017).

    Article  Google Scholar 

  15. I. Løvik, M. Hillestad and T. Hertzberg, Comput. Chem. Eng., 22, S707 (1998).

    Article  Google Scholar 

  16. H. Kordabadi and A. Jahanmiri, Chem. Eng. J., 108, 249 (2005).

    Article  CAS  Google Scholar 

  17. H. Kordabadi and A. Jahanmiri, Chem. Eng. Process., 46, 1299 (2007).

    Article  CAS  Google Scholar 

  18. H. W. Lim, H. J. Jun, M. J. Park, H. S. Kim, J. W. Bae, K. S. Ha, H. J. Chae and K. W. Jun, Korean J. Chem. Eng., 27, 1760 (2010).

    Article  CAS  Google Scholar 

  19. C. Zhang, K.-W. Jun, R. Gao, G. Kwak and H.-G. Park, Fuel, 190, 303 (2017).

    Article  CAS  Google Scholar 

  20. J. M. Smith, H. C. Van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 7th Ed. McGraw-Hill, New York (2005).

    Google Scholar 

  21. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice-Hall, New Jersey (1999).

    Google Scholar 

  22. E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28, 1429 (1936).

    Article  CAS  Google Scholar 

  23. G. H. Graaf, P. J. J. M. Sijtsema, E. J. Stamhuis and G. E. H. Joosten, Chem. Eng. Sci., 41, 2883 (1986).

    Article  CAS  Google Scholar 

  24. K. L. Ng, D. Chadwick and B. A. Toseland, Chem. Eng. Sci., 54, 3587 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-June Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, M., Park, MJ., Kwak, G. et al. Maximum production of methanol in a pilot-scale process. Korean J. Chem. Eng. 35, 355–363 (2018). https://doi.org/10.1007/s11814-017-0295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0295-7

Keywords

Navigation