Skip to main content
Log in

Optimization of methanol synthesis reaction on Cu/ZnO/Al2O3/ZrO2 catalyst using genetic algorithm: Maximization of the synergetic effect by the optimal CO2 fraction

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A kinetics model that takes the synergetic effect of carbon dioxide fraction on the methanol production rate into account is applied to the development of a mathematical model for the bench-scale reactor. A comparison between the simulation results and the experimental data corroborates the validity of the model. Several optimization strategies are suggested to maximize the methanol yield, among which the utilization of piecewise trajectories for wall temperature along the reactor axis as well as the optimal CO2 fraction at the inlet of the reactor is found to be the best strategy in the sense of methanol production per unit amount of the feed, in such a way that the optimization strategy considers the variation of the reaction temperature in the reactor and maximizes the synergetic effect on the production rate by the addition of carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Olah, H. Doggweiler, J. D. Felberg, S. Frohlich, M. J. Grdina, R. Karpeles, T. Keumi, S. Inaba, W. M. Ip, K. Lammerstsmak, G. Salem and D. C. Tabor, J. Am. Chem. Soc., 106, 2143 (1984).

    Article  CAS  Google Scholar 

  2. G. A. Olah, Angew. Chem. Int. Ed., 44, 2636 (2005).

    Article  CAS  Google Scholar 

  3. G. K. S. Prakash, M. C. Smart, Q.-J. Wang, A. Atti, V. Pleynet, B. Yang, K. McGrath, G. A. Olah, S. R. Narayanan, W. Chun, T. Valdez and S. Surampudi, J. Fluorine Chem., 125, 1217 (2004).

    Article  CAS  Google Scholar 

  4. J. P. Lange, Catal. Today, 64, 3 (2001).

    Article  CAS  Google Scholar 

  5. C. N. Satterfield, Heterogeneous catalysis in industrial practice, McGraw-Hill, New York (1991).

    Google Scholar 

  6. R. G. Herman, K. Klier, G. W. Simmons, B. P. Finn and J. B. Bulko, J. Catal., 56, 407 (1979).

    Article  CAS  Google Scholar 

  7. G. C. Chinchen, P. S. Denny, D. G. Parger, M. S. Spenser and D. A. Whan, Appl. Catal., 30, 333 (1987).

    Article  CAS  Google Scholar 

  8. B. Denise and R. P. A. Sneeden, J. Mol. Catal., 17, 359 (1982).

    Article  CAS  Google Scholar 

  9. K. Klier, V. Chatikavanij, R. G. Herman and G. W. Simmons, J. Catal., 74, 343 (1982).

    Article  CAS  Google Scholar 

  10. J. F. Edwards and G. L. Schrader, J. Phys. Chem., 88, 5624 (1984).

    Article  Google Scholar 

  11. A. Coteron and A. N. Hayhurst, Chem. Eng. Sci., 49, 209 (1994).

    Article  CAS  Google Scholar 

  12. M. A. McNeil, C. J. Schack and R. G. Rinker, Appl. Catal., 50, 265 (1989).

    Article  CAS  Google Scholar 

  13. H.-W. Lim, M.-J. Park, S.-H. Kang, H.-J. Chae, J. W. Bae and K.-W. Jun, Ind. Eng. Chem. Res., 48, 10448 (2009).

    Article  CAS  Google Scholar 

  14. I. Løvik, M. Hillestad and T. Hertzberg, Comput. Chem. Eng., 22, S707 (1998).

    Article  Google Scholar 

  15. H. Kordabadi and A. Jahanmiri, Chem. Eng. J., 108, 249 (2005).

    Article  CAS  Google Scholar 

  16. M. R. Rahimpour and M. Lotfinejad, Chem. Eng. Technol., 30, 1062 (2007).

    Article  CAS  Google Scholar 

  17. M. R. Rahimpour and H. Elekaei Behjatia, Fuel Process. Technol., 90, 279 (2009).

    Article  CAS  Google Scholar 

  18. G. H. Graaf, P. J. J. M. Sijtsema, E. J. Stamhuis and G. E. H. Joosten, Chem. Eng. Sci., 41, 2883 (1986).

    Article  CAS  Google Scholar 

  19. P. Mizsey, E. Newson, T. Truong and P. Hottinger, Appl. Catal. A: Gen., 213, 233 (2001).

    Article  CAS  Google Scholar 

  20. K. L. Ng, D. Chadwick and B. A. Toseland, Chem. Eng. Sci., 54, 3587 (1999).

    Article  CAS  Google Scholar 

  21. H. Kordabadi and A. Jahanmiri, Chem. Eng. Process., 46, 1299 (2007).

    CAS  Google Scholar 

  22. H. J. Chae, S. T. Choo, H. I. Choi and S. Nam, Ind. Eng. Chem. Res., 39, 1159 (2000).

    Article  CAS  Google Scholar 

  23. T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26, 1183 (1934).

    Article  CAS  Google Scholar 

  24. R. H. Perry and D. W. Green, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, New York (1997).

    Google Scholar 

  25. B. J. Lommerts, G. H. Graaf and A. A. C. M. Beenackers, Chem. Eng. Sci., 55, 5589 (2000).

    Article  CAS  Google Scholar 

  26. R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev and M. A. Douglas, J. Power Sources, 122, 9 (2003).

    Article  CAS  Google Scholar 

  27. E. N. Fuller, P. D. Schettler and J. C. Gidding, Ind. Eng. Chem., 58, 19 (1966).

    Google Scholar 

  28. K. R. Westerterp, W. P. M. Van Swaaij and A. A. C. M. Beenackers, Chemical reactor design and operation, Wiley, Chichester (1987).

    Google Scholar 

  29. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-June Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, HW., Jun, H.J., Park, MJ. et al. Optimization of methanol synthesis reaction on Cu/ZnO/Al2O3/ZrO2 catalyst using genetic algorithm: Maximization of the synergetic effect by the optimal CO2 fraction. Korean J. Chem. Eng. 27, 1760–1767 (2010). https://doi.org/10.1007/s11814-010-0311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0311-7

Key words

Navigation