Skip to main content
Log in

High performance of manganese oxide octahedral molecular sieve adsorbents for removing sulfur compounds from fuel gas

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Properties of porous manganese oxide adsorbents for adsorptive removal of tert-butylmercaptan (TBM) from CH4 fuel gas were investigated at ambient temperature and atmospheric pressure. The adsorbents were prepared by oxidation reactions of Mn2+ with KMnO4 and via the sol-gel method by reduction of KMnO4 using fumaric acid as the reducing agent. The effects of preparation method, precursor, temperature, and time for the structure and desulfurization properties of the resulting adsorbents were studied. Cryptomelane octahedral manganese oxide molecular sieve (OMS-2) adsorbents exhibited high breakthrough TBM adsorption (1.3–2.5mmol g-1) with the properties varied by the synthesis condition. The OMS-2-Ac prepared by the oxidation reactions of manganese acetate resulted in smaller OMS-2 crystallites with higher surface area compared to those prepared from manganese sulfate and chloride precursors, and it exhibited an enhanced TBM adsorption uptake. TBM adsorption capacity of OMS-2 could be further enhanced by introducing Cu into the structure. This gave rise to a markedly high TBM breakthrough adsorption (7.4mmol g-1) for Cu-OMS-2 (7.8 wt% Cu doping), which is significantly greater than the values reported for activated carbon, zeolite, and other porous oxide based solid adsorbents at similar conditions in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lee, J. Kim, H.C. Lee, K.H. Lee, E.D. Park and H.-C. Woo, J. Phys. Chem. C, 112, 18955 (2008).

    Article  CAS  Google Scholar 

  2. S. Satokawa, Y. Kobayashi and H. Fujiki, Appl. Catal. B: Environ., 56, 51 (2005).

    Article  CAS  Google Scholar 

  3. P. H. Ho, S.-Y. Lee, D. Lee and H.-C. Woo, Int. J. Hydrogen Energy, 39, 6737 (2014).

    Article  CAS  Google Scholar 

  4. C. Song, Catal. Today, 77, 17 (2002).

    Article  CAS  Google Scholar 

  5. R. Ferrauto, S. Hwang, L. Shore, W. Ruettinger, J. Lampert, T. Giroux, Y. Liu and O. Ilinich, Annu. Rev. Mater. Res., 33, 1 (2003).

    Article  Google Scholar 

  6. D. D. Whitehurst, T. Isoda and I. Mochida, Adv. Catal., 42, 345 (1998).

    CAS  Google Scholar 

  7. H. Cui and S.Q. Turn, Appl. Catal. B: Environ., 88, 25 (2009).

    Article  CAS  Google Scholar 

  8. H. Tamai, H. Nagoya and T. Shiono, J. Colloid Interface Sci., 300, 814 (2006).

    Article  CAS  Google Scholar 

  9. S. Hernandez, L. Solarino, G. Orsello, N. Russo, D. Fino and G. Saracco, Int. J. Hydrogen Energy, 33, 3209 (2008).

    Article  CAS  Google Scholar 

  10. D. Lee, E.-Y. Ko, H. C. Lee, S. Kim and E.D. Park, Appl. Catal. A: Gen., 334, 129 (2008).

    Article  CAS  Google Scholar 

  11. Y. H. Kim, H. C. Woo, D. Lee, H. C. Lee and E.D. Park, Korean J. Chem. Eng., 26, 1291 (2010).

    Article  Google Scholar 

  12. C.-L. Hwang and N.-H. Tai, Appl. Catal. B: Environ., 93, 363 (2010).

    Article  CAS  Google Scholar 

  13. A. S. H. Salem, Ind. Eng. Chem. Res., 33, 336 (1994).

    Article  CAS  Google Scholar 

  14. R.T. Yang, A. J. Hernández-Maldonado and F. H. Yang, Science, 301, 79 (2003).

    Article  CAS  Google Scholar 

  15. F.T.T. Ng, A. Rahman, T. Ohasi and M. Jiang, Appl. Catal. B: Environ., 56, 127 (2005).

    Article  CAS  Google Scholar 

  16. C. L. Garcia and J. A. Lercher, J. Phys. Chem., 95, 10729 (1991).

    Article  CAS  Google Scholar 

  17. S. Velu, X. Ma and C. Song, Ind. Eng. Chem. Res., 42, 5293 (2003).

    Article  CAS  Google Scholar 

  18. G. S. Jung, D. H. Park, D. H. Lee, H. C. Lee, S. B. Hong and H. C. Woo, Appl. Catal. B: Environ., 100, 264 (2010).

    Article  CAS  Google Scholar 

  19. H.-T. Kim, S.-M. Kim, K.-W. Jun, Y.-S. Yoon and J.-H. Kim, Int. J. Hydrogen Energy, 32, 3603 (2007).

    Article  CAS  Google Scholar 

  20. P. Jeevanandam, K. J. Klabunde and S.H. Tetzler, Micropor. Mesopor. Mater., 79, 101 (2005).

    Article  CAS  Google Scholar 

  21. P.H. Ho, S.Y. Lee, J. Kim, D. Lee and H.C. Woo, Fuel Process. Technol., 131, 238 (2015).

    Article  CAS  Google Scholar 

  22. G. Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford and S. L. Suib, Chem. Mater., 23, 3892 (2011).

    Article  CAS  Google Scholar 

  23. E. K. Nyutu, C.-H. Chen, S. Sithambaram, V.M.B. Crisostomo and S. L. Suib, J. Phys. Chem. C, 112, 6786 (2008).

    Article  CAS  Google Scholar 

  24. N. N. Opembe, C. K. King’ondu, A. E. Espinal, C.-H. Chen, E. K. Nyutu, V.M. Crisostomo and S. L. Suib, J. Phys. Chem. C, 114, 14417 (2010).

    Article  CAS  Google Scholar 

  25. Q. Feng, H. Kanoh, Y. Miyai and K. Ooi, Chem. Mater., 7, 148, (1995).

    Article  CAS  Google Scholar 

  26. H. C. Genuino, S. Dharmarathna, E. C. Njagi, M. C. Mei and S. L. Suib, J. Phys. Chem. C, 116, 12066 (2012).

    Article  CAS  Google Scholar 

  27. W. Y. Hernández, M.A. Centeno, S. Ivanova, P. Eloy, E.M. Gaigneaux and J. A. Odriozola, Appl. Catal. B: Environ., 123, 27 (2012).

    Article  Google Scholar 

  28. R. Kumar, S. Sithambaram and S.L. Suib, J. Catal., 262, 304 (2009).

    Article  CAS  Google Scholar 

  29. T. Oishi, K. Yamaguchi and N. Mizuno, ACS Catal., 1, 1351 (2011).

    Article  CAS  Google Scholar 

  30. O. Ghodbane, F. Ataherian, N.-L. Wu and F. Favier, J. Power Sources, 206, 454 (2012).

    Article  CAS  Google Scholar 

  31. C. H. Jiang, S. X. Dou, H. K. Liu, M. Ichihara and H. S. Zhou, J. Power Sources, 172, 410 (2007).

    Article  CAS  Google Scholar 

  32. J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong and F. Stellacci, Nat. Nano., 3, 332 (2008).

    Article  CAS  Google Scholar 

  33. S. Ching, J. L. Roark, N. Duan and S. L. Suib, Chem. Mater., 9, 750 (1997).

    Article  CAS  Google Scholar 

  34. X.F. Shen, Y.S. Ding, J. Liu, J. Cai, K. Laubernds, R.P. Zerger, A. Vasiliev, M. Aindow and S. L. Suib, Adv. Mater., 17, 805 (2005).

    Article  CAS  Google Scholar 

  35. H. Wakita, Y. Tachibana and M. Hosaka, Micropor. Mesopor. Mater., 46, 237 (2001).

    Article  CAS  Google Scholar 

  36. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, J. Chastain and R.C. King, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronic, U.S.A. (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doohwan Lee or Hee Chul Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, P.H., Lee, S.C., Kim, J. et al. High performance of manganese oxide octahedral molecular sieve adsorbents for removing sulfur compounds from fuel gas. Korean J. Chem. Eng. 32, 1766–1773 (2015). https://doi.org/10.1007/s11814-015-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0031-0

Keywords

Navigation