Skip to main content

Advertisement

Log in

Supercritical extraction of essential oil from Echium amoenum seed : Experimental, modeling and genetic algorithm parameter estimation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mathematical modeling of supercritical CO2 extraction of essential oil from Echium amoenum seed was carried out. The effect of process variables such as pressure (15, 20, 25 and 30 MPa), temperature (313, 318, 323 and 328 K) and CO2 flow rate (0.6, 0.9, 1.2 and 1.5 ml/min) on the recovery of essential oil extraction was investigated in a series of experiments conducted in a laboratory scale apparatus. The chemical composition of recovered essential oil (fatty acids) was analyzed by GC-FID. The mathematical model was developed utilizing diffusion-controlled regime in the pore and film mass transfer resistances with axial dispersion of the mobile phase at dynamic conditions. Henry’s law was used to describe the equilibrium state of solid and pore fluid phases. The obtained mass transfer equations for the mobile and stationary phases were solved using the numerical explicit method of line, and the modeling predictions of oil extraction recovery were validated via comparison with experimental data. Genetic algorithm (GA) was applied to estimate the optimum value of the Henry constant. Finally, applying the validated model the extraction recovery was investigated as a function of effective variables such as dynamic extraction time and supercritical fluid temperature, pressure and flow rate. A set of optimal operating conditions were determined via modeling parametric analysis to achieve the objective function of maximum recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Shafaghi, N. Naderi, L. Tahmasb and M. Kamalinejad, Iran J. Pharm. Res., 1, 1 (2002).

    Google Scholar 

  2. J. A. Menendez, R. Colomer and R. Lupu, Med. Hypo. Theses, 64, 2 (2005).

    Google Scholar 

  3. H. Ge, X. Kong, L. Shi, L. Hou, Z. Liu and P. Li, Cell Biol. Int., 33, 3 (2009).

    Article  Google Scholar 

  4. L. Wang, C. L. Weller, V. L. Schlegel, T. P. Carr and S. L. Cuppett, Bioresour. Technol., 99, 5 (2008).

    Google Scholar 

  5. S. Lucas, M. P. Calvo, J. Garcia-Serna, C. Palencia and M. J. Cocero, J. Supercrit. Fluids, 41, 2 (2007).

    Google Scholar 

  6. E. L.G. Oliveira, A. J. D. Silvestre and C.M. Silva, Chem. Eng. Res. Des., 89, 1104 (2011).

    Article  CAS  Google Scholar 

  7. Z. Huang, X. H. Shi and W. J. Jiang, J. Chromatogr. A, 1250, 2 (2012).

    Article  CAS  Google Scholar 

  8. M. G. Bernardo-Gil and M. Casquilho, AIChE J., 53, 11 (2007).

    Article  Google Scholar 

  9. D. Mongkholkhajornsilp, S. Douglas, P. L. Douglas, A. Elkamel, W. Teppaitoon and S. Pongamphai, J. Food Eng., 71, 4 (2005).

    Article  Google Scholar 

  10. F. Gaspar, T. Lu, R. Santos and B. Al-Duri, J. Supercrit. Fluids, 25, 3 (2003).

    Google Scholar 

  11. E. Reverchon and L. Sesti Osseo, Chem. Biochem. Eng. Q., 8, 1 (1994).

    Google Scholar 

  12. U. Salgin, Döker and A. ÇalImlI, J. Supercrit. Fluids, 38, 3 (2006).

    Article  Google Scholar 

  13. A. K. K. Lee, N. R. Bulley, M. Fattori and A. Meisen, J. Am. Oil Chem. Soc., 63, 7 (1986).

    Google Scholar 

  14. E. Reverchon and C. Marrone, Chem. Eng. Sci., 52, 20 (1997).

    Google Scholar 

  15. E. Reverchon and M. Poletto, Chem. Eng. Sci., 51, 15 (1996).

    Article  Google Scholar 

  16. E.M. C. Reis-Vasco, J. A. P. Coelho, A.M. F. Palavra, C. Marrone and E. Reverchon, Chem. Eng. Sci., 55, 15 (2000).

    Article  Google Scholar 

  17. S.M. Ghoreishi, R.G. Shahrestani and H. S. Ghaziaskar, Chem. Eng. Technol., 32, 1 (2009).

    Article  Google Scholar 

  18. H. Sovová, J. Kuera and J. Je, Chem. Eng. Sci., 49, 3 (1994).

    Google Scholar 

  19. J. Stastova, J. Jez, M. Bartlova and H. Sovova, Chem. Eng. Sci., 51, 18 (1996).

    Article  Google Scholar 

  20. C. Marrone, M. Poletto, E. Reverchon and A. Stassi, Chem. Eng. Sci., 53, 21 (1998).

    Article  Google Scholar 

  21. E. Reverchon, J. Daghero, C. Marrone, M. Mattea and M. Poletto, Ind. Eng. Chem. Res., 38, 8 (1999).

    Article  Google Scholar 

  22. H. J. Kim, S. B. Lee, K. A. Park and I. K. Hong, Sep. Purif. Technol., 15, 1 (1999).

    Article  CAS  Google Scholar 

  23. S. Angus, B. Armstrong and K.M. De-Reuck, IUPAC: International thermodynamics tables of the fluid state carbon dioxide, Pergamon Press, New York (1976).

    Google Scholar 

  24. B. E. Poling, J.M. Prausnitz, O. C. John Paul and R.C. Reid, The properties of gases and liquids, McGraw-Hill, New York (2001).

    Google Scholar 

  25. C. H. He, Y. S. Yu and W. K. Su, Fluid Phase Equilib., 142, 1 (1998).

    Article  Google Scholar 

  26. N. Wakao and J.M. Smith, Chem. Eng. Sci., 17, 11 (1962).

    Article  Google Scholar 

  27. C. S. Tan, S. K. Liang and D. C. Liou, Chem. Eng. J., 38, 1 (1988).

    Article  Google Scholar 

  28. T. Funazukuri, C. Kong and S. Kagei, J. Supercrit. Fluids, 13, 1 (1998).

    Article  Google Scholar 

  29. D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addision Wesley, MA (1989).

    Google Scholar 

  30. J. H. Holland, Adaptation in natural and artificial systems, MIT Press Cambridge, MA (1992).

    Google Scholar 

  31. J. L. Guil-Guerrero, J.C. López-Martínez, F. Gómez-Mercado and P. Campra-Madrid, Eur. J. Lipid Sci. Technol., 108, 1 (2006).

    Article  Google Scholar 

  32. E. Daukas, P. R. Venskutonis and B. Sivik, J. Supercrit. Fluids, 22, 3 (2002).

    Google Scholar 

  33. A. Salimi, S. Fatemi, H. Z.N. Nei and A. Safaralie, Chem. Eng. Technol., 31, 10 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Ghoreishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoreishi, S.M., Bataghva, E. Supercritical extraction of essential oil from Echium amoenum seed : Experimental, modeling and genetic algorithm parameter estimation. Korean J. Chem. Eng. 31, 1632–1640 (2014). https://doi.org/10.1007/s11814-014-0118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0118-z

Keywords

Navigation