Skip to main content
Log in

Preparation and characterizations of activated carbon from kenaf fiber for equilibrium adsorption studies of copper from wastewater

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The potential of activated carbon prepared from kenaf fiber (KF) to remove copper (II) from aqueous effluents was investigated. The fibers were first semi-carbonized, then impregnated with potassium hydroxide (KOH) and finally activated by using carbon dioxide (CO2) gas to produce activated carbon. Pore structure and physical characteristics of the prepared kenaf fiber activated carbon (KFAC) were determined. Adsorption studies for divalent copper (Cu) ions were carried out to delineate the effect of contact time, temperature, pH and initial metal ion concentration on equilibrium adsorption capacity. The experimental data followed pseudo-second-order kinetics and Elovich Model than pseudo-first-order. Langmuir, Freundlich and Temkin models were implemented to analyze the parameters for adsorption at 30 °C, 50 °C and 70 °C. Thermodynamic parameters such as ΔGo, ΔHo and ΔSo which represent Gibbs free energy, enthalpy and entropy, respectively, were evaluated. It was concluded that activated carbon from kenaf fiber (KFAC) can be used as an efficient adsorbent for removal of Cu (II) from synthetic wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Jonathan, Am. J. Appl. Sci., 7(2), 153 (2010).

    Article  Google Scholar 

  2. M. C. and B.Y. Kamruzzaman, Am. J. Appl. Sci., 6(7), 1418 (2009).

    Article  Google Scholar 

  3. S. E. Bailey, T. J. Olin, R. M. Bricka and D. D. Adrian, Water Res., 33(11), 2469 (1999).

    Article  CAS  Google Scholar 

  4. T.W. Tee and A.R.M. Khan, Environ. Technol. Lett., 9, 1223 (1988).

    Article  CAS  Google Scholar 

  5. S. Cay, A. Uyanik and A. Ozajik, Sep. Purif. Technol., 38, 273 (2004).

    Article  CAS  Google Scholar 

  6. L. Panda, B. Das and D. S. Rao, Korean J. Chem. Eng., 28(10), 2024 (2011).

    Article  CAS  Google Scholar 

  7. K. S. Rao, S. Anand and P. Venkateswarlu, Korean J. Chem. Eng., 27(5), 1547 (2010).

    Article  CAS  Google Scholar 

  8. C. Jeon, J.Y. Park and Y. J. Yoo, Korean J. Chem. Eng., 18(6), 955 (2001).

    Article  CAS  Google Scholar 

  9. A. Pandey, A. Shukla and L. Ray, Am. J. Biochem. Biotechnol., 3(2), 55 (2009).

    Google Scholar 

  10. S. A. Dastgheib and A. D. Rockstraw, Carbon, 31, 1849 (2001).

    Article  Google Scholar 

  11. M. A. Hashim and K. H. Chu, Chem. Eng. J., 97, 249 (2004).

    Article  CAS  Google Scholar 

  12. M. Horsfall, A. A. Abia and A. I. Spiff, Afr. J. Biotechnol., 2(10), 360 (2003).

    CAS  Google Scholar 

  13. A. Zuorro and R. Lavecchia, Am. J. Appl. Sci., 7, 153 (2010).

    Article  CAS  Google Scholar 

  14. I. Villaescusa, N. Fiol, M. Martinez, N. Mirralles and J. Poch, Water Res., 38, 992 (2004).

    Article  CAS  Google Scholar 

  15. A. Saeed, M. Iqbal and M.V. Akhtar, J. Hazard. Mater., B117, 65 (2005).

    Article  Google Scholar 

  16. I. Villaescusa, N. Fiol, M. Martinez, N. Mirralles and J. Poch, Sep. Purif. Technol., 50, 132 (2006).

    Article  Google Scholar 

  17. A. Lopez-Delgado, C. Perez and F. A. Lopez, Water Res., 32, 989 (1998).

    Article  CAS  Google Scholar 

  18. S. C. Pan, C. C. Lin and D. H. Tseng, Resour. Conserv. Recycl., 39, 79 (2003).

    Article  Google Scholar 

  19. N. Calace, E. Nardi, B. M. Petronio, M. Pietroletti and G. Tosti, Chemosphere, 51, 797 (1997).

    Article  Google Scholar 

  20. R. Gundogan, B. Acemioglua and M. H. Alma, J. Colloid Interface Sci., 269, 303 (2004).

    Article  CAS  Google Scholar 

  21. M. Goyal, V. K. Rattan, D. Aggarwal and R.C. Bansal, Colloids Surf., 190, 229 (2001).

    Article  CAS  Google Scholar 

  22. L. Monser and N. Adhoum, Sep. Purif. Technol., 26, 137 (2002).

    Article  CAS  Google Scholar 

  23. Z. Z. Chowdhury, S.M. Zain, A. K. Rashid and A. A. Ahmed, Am. J. Appl. Sci., 8(3), 230 (2011).

    Article  CAS  Google Scholar 

  24. S. Aber, A. Khataee and M. Sheydaei, Bioresour. Technol., 100, 6586 (2009).

    Article  CAS  Google Scholar 

  25. N. H. Phan, S. Rio, C. Faur, L. Le Coq, P. Le Cloirec and T. H. Nguyen, Carbon, 44, 2569 (2006).

    Article  CAS  Google Scholar 

  26. A. C Lua and T. Yang, J. Colloid Interface Sci., 274, 594 (2004).

    Article  CAS  Google Scholar 

  27. IUPAC, IUPAC Manual of Symbols and Terminology, Pure Appl. Chem. 31:587 (1972).

    Google Scholar 

  28. V. C. Srivastava, I. D. Mall and I. M. Mishra, Colloids and Surfaces A: Physiochem. Eng. Aspects., 312, 172 (2008).

    Article  CAS  Google Scholar 

  29. P. C. Heimenz and R. Razagopalan, Principles of Colloid and Surface Chemistry, 3rd Ed., Marcel Decker, New York, 516 (1977).

    Google Scholar 

  30. A. Habib, N. Islam, A. Islam and A. M. S. Alam, Pak. J. Anal. Environ. Chem., 8(1–2), 21 (2007).

    CAS  Google Scholar 

  31. S. Ong, P. Keng, A. Chong, S. Lee and Y. Hung, Am. J. Environ. Sci., 6(3), 244 (2010).

    Article  CAS  Google Scholar 

  32. Y. S. Ho and G. McKay, Process Biochemistry, 34(5), 451 (1999).

    Article  CAS  Google Scholar 

  33. Y. S. Ho and G. McKay, Water Res., 33(2), 578 (1999).

    Article  CAS  Google Scholar 

  34. W. J. Weber and J. C. Morris, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31 (1963).

    Google Scholar 

  35. M. Ozacar and I. A. Sengil, Process Biochem., 40, 565 (2005).

    Article  CAS  Google Scholar 

  36. Y. S. Ho and G. McKay, Can. J. Chem. Eng., 76, 822 (1998).

    Article  CAS  Google Scholar 

  37. M. H. Kalavathy, T. Karthikeyan, S. Rajgopal and L. R. Miranda, J. Colloid Interface Sci., 292, 354 (2005).

    Article  CAS  Google Scholar 

  38. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  39. H.M. F. Freundlich, J. Phys. Chem., 57A, 385 (1906).

    Google Scholar 

  40. M. I. Temkin and V. Pyzhev, J. Phys. Chem. (U.S.S.R.), 13, 851 (1939).

    CAS  Google Scholar 

  41. P. Pruksathorn and T. Vitidsant, Am. J. Eng. Appl. Sci., 2(1), 1 (2009).

    Article  Google Scholar 

  42. M. Kazmi, N. Feroze, S. Naveed and S. H. Javed, Korean J. Chem. Eng., 28(10), 2033 (2011).

    Article  CAS  Google Scholar 

  43. Z. Z. Chowdhury, S.M. Zain and A.K. Rashid, E. J. Chem., 8(1), 333 (2011).

    Article  CAS  Google Scholar 

  44. M. Torab-Mostaidi, H. Ghassabzadeh, M.G. Maragheh, S. J. Ahmadi and H. Tahiri, Braz. J. Chem. Eng., 27(2), 299 (2010).

    Article  Google Scholar 

  45. T.A. Kurniawan, G.Y. S. Chan, W. Lo and S. Babel, Sci. Total Environ., 366, 409 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaira Zaman Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, Z.Z., Zain, S.M., Khan, R.A. et al. Preparation and characterizations of activated carbon from kenaf fiber for equilibrium adsorption studies of copper from wastewater. Korean J. Chem. Eng. 29, 1187–1195 (2012). https://doi.org/10.1007/s11814-011-0297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0297-9

Key words

Navigation