Skip to main content
Log in

Duodeno-Jejunal Tube Placement in an Experimental Model of Obesity: Effects on Food Behaviour and Basal Energy Expenditure

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Metabolic surgery can modulate weight as well as food intake and basal energy expenditure. In this study, we evaluate the effectiveness of duodenal exclusion by analysing anthropometric results, intake variations, food behaviour and calorimetric parameters.

Methods

This is an experimental study with 8-week-old Sprague-Dawley male rats. The sequences used are as follows: Cafeteria diet for 3 weeks, followed by surgery and sacrifice at 4 weeks. Four experimental groups are as follows: two non-obese groups (n = 15; surgery = 10, sham = 5) and two obese groups by cafeteria diet (n = 15; surgery = 10, sham = 5). Surgery performed was duodenal exclusion with physical barrier. Weight, intake, glycaemia and basal energy expenditure by indirect calorimetry were monitored before and after surgery.

Results

Weight changes in groups that underwent intervention were significant. The reduction in calorie consumption after surgery was significant in the obese intervention group despite an increased standard feed consumption (161 ± 11 vs 139 ± 13 Kcal/day, p < 0.05; due to a lower consumption of cafeteria diet). In non-obese animals, changes were transient. Basal energy expenditure decreased in both intervention groups: 6.2 ± 0.5 vs 5.5 ± 0.4 Kcal/kg/h in non-obese animals and 5.6 ± 0.3 vs 4.7 ± 0.3 Kcal/kg/h in obese animals (p < 0.05).

Conclusions

Duodeno-jejunal tube placement stops weight gain in obese and non-obese animals. In obese animals, there is an important qualitative change in appetite towards standard feed with a significant decrease in caloric intake. In non-obese animals, changes in quantitative intake are transient. This surgery decreases basal energy expenditure in obese animals. This may be attributed to an enhanced thermogenic effect of food and a slowing in the animal’s weight gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30. PMID: 12023994.

    Article  PubMed  Google Scholar 

  2. Xu Y, Ohinata K, Meguid MM, et al. Gastric bypass model in the obese rat to study metabolic mechanisms of weight loss. J Surg Res. 2002;107(1):56–63. PMID: 12384065.

    Article  CAS  PubMed  Google Scholar 

  3. Del Castillo DD, Sabench Pereferrer F, Hernández González M, et al. The evolution of experimental surgery in the field of morbid obesity. Obes Surg. 2004;14(9):1263–72. PMID: 15527646.

    Article  Google Scholar 

  4. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239:1–11. PMID: 14685093.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9. PMID: 17060767.

    Article  PubMed Central  PubMed  Google Scholar 

  6. DePaula AL, Macedo AL, Rassi N, et al. Laparoscopic treatment of metabolic syndrome in patients with type 2 diabetes mellitus. Surg Endosc. 2008;22(12):2670–8. PMID: 18347866.

    Article  CAS  PubMed  Google Scholar 

  7. Forsum E, Hillman PE, Nesheim MC. Effect of energy restriction on total heat production, basal metabolic rate, and specific dynamic action of food in rats. J Nutr. 1981;198(111):1691–7. PMID: 6793699.

    Google Scholar 

  8. Shin AC, Zheng H, Townsend RL, et al. Longitudinal assessment of food intake, fecal energy loss, and energy expenditure after Roux-en-Y gastric bypass surgery in high-fat-fed obese rats. Obes Surg. 2013;23(4):531–40. PubMed PMID: 23269513.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Saeidi N, Nestoridi E, Kucharczyk J, et al. Sleeve gastrectomy and Roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. Int J Obes (Lond). 2012;36(11):1396–402. PMID: 23044855.

    Article  CAS  Google Scholar 

  10. Sabench F, Hernàndez M, Del Castillo D. Experimental metabolic surgery: justification and technical aspects. Obes Surg. 2011;21:1617–28. PMID: 21359589.

    Article  Google Scholar 

  11. Sabench F, Hernández M, Feliu A, et al. Influence of sleeve gastrectomy on several experimental models of obesity: metabolic and hormonal implications. Obes Surg. 2008;18:97–108. PMID: 18066699.

    Article  Google Scholar 

  12. Cohen R, le Roux CW, Papamargaritis D, Salles JE, Petry T, Correa JL, Pournaras DJ, Galvao Neto M, Martins B, Sakai P, Schiavon CA, Sorli C. Role of proximal gut exclusion from food on glucose homeostasis in patients with type 2 diabetes. Diabet Med. 2013;30(12). PMID: 23802863.

  13. Liu S, Zhang G, Wang L, et al. The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats. Ann Surg. 2012;256(6):1049–58. PMID: 23001083.

    Article  PubMed  Google Scholar 

  14. Werling M, Olbers T, Fändriks L, et al. Increased postprandial energy expenditure may explain superior long term weight loss after Roux-en-Y gastric bypass compared to vertical banded gastroplasty. PLoS One. 2013;8(4):e60280. PMID: 23573244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Stylopoulos N, Hoppin AG, Kaplan LM. Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity (Silver Spring). 2009;17:1839–47. PMID: 19556976.

    Article  Google Scholar 

  16. Muñoz R, Carmody JS, Stylopoulos N, et al. Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol. 2012;303(10):R985–93. PMID: 22972837.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Even PC, Nadkarni NA. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol. 2012;303(5):R459–76. PMID: 22718809.

    Article  CAS  PubMed  Google Scholar 

  18. Wiskin AE, Davies JH, Wootton SA, et al. Energy expenditure, nutrition and growth. Arch Dis Child. 2011;96(6):567–72. doi:10.1136/adc.2009.158303.

    Article  CAS  PubMed  Google Scholar 

  19. Pereira LO, Francischi RP, Lancha AH. Obesidade: Hábitos Nutricionais, sedentarismo e Resistência à Insulina. Arq Bras Endocrinol Metab. 2003;47:111–27.

    Article  Google Scholar 

  20. Pinheiro V, Canaan R, Gonçalves A. Insulemia, ingesta alimentaria y metabolismo energético. Rev Chil Nutr. 2008;35:18–24.

    Article  Google Scholar 

  21. Tarnoff M, Rodriguez L, Escalona A, et al. Open label, prospective, randomized controlled trial of an endoscopic duodenal-jejunal bypass sleeve versus low calorie diet for pre-operative weight loss in bariatric surgery. Surg Endosc. 2009;23(3):650–6. PMID: 19067075.

    Article  CAS  PubMed  Google Scholar 

  22. Schouten R, Rijs CS, Bouvy ND, et al. A multicenter, randomized efficacy study of the EndoBarrier Gastrointestinal Liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2010;251(2):236–43. PMID: 19858703.

    Article  PubMed  Google Scholar 

  23. de Moura EG, Martins BC, Lopes GS, et al. Metabolic improvements in obese type 2 diabetes subjects implanted for 1 year with an endoscopically deployed duodenal-jejunal bypass liner. Diabetes Technol Ther. 2012;14(2):183–9. PMID: 21932999.

    Article  PubMed  Google Scholar 

  24. Sandler BJ, Rumbaut R, Swain CP, et al. Human experience with an endoluminal, endoscopic, gastrojejunal bypass sleeve. Surg Endosc. 2011;25(9):3028–33. PMID: 21487876.

    Article  PubMed  Google Scholar 

  25. Aguirre V, Stylopoulos N, Grinbaum R, et al. An endoluminal sleeve induces substantial weight loss and normalizes glucose homeostasis in rats with diet-induced obesity. Obesity (Silver Spring). 2008;16(12):2585–92. PMID: 19279655.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors (Sabench F, Vives M, Cabrera A, Hernández M, Feliu A, Blanco S, Molina A, Bertrán R, Joven J, Del Castillo D) declare that they have no conflict of interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Del Castillo Déjardin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabench Pereferrer, F., Vives Espelta, M., Cabrera Vilanova, A. et al. Duodeno-Jejunal Tube Placement in an Experimental Model of Obesity: Effects on Food Behaviour and Basal Energy Expenditure. OBES SURG 25, 55–63 (2015). https://doi.org/10.1007/s11695-014-1345-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-014-1345-4

Keywords

Navigation