Skip to main content
Log in

Outbreeding Depression in Atlantic Salmon Revealed by Hypoxic Stress During Embryonic Development

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The fitness consequences of outbreeding in wild populations are extremely variable. Heterosis and outbreeding depression can both be observed but the effect of environmental stressors on the occurrence of these phenomena is still poorly understood. We tested the influence of oxygen stress during embryonic development on consequences of outbreeding in wild populations of Atlantic salmon (Salmo salar). We used a common garden experiment and performed crosses within and between salmon populations to study performances of embryos reared under normal and hypoxic conditions. We detected both heterosis and outbreeding depression depending on traits but irrespective of divergence between parental populations. Nevertheless, outbreeding depression was observed almost exclusively under hypoxic conditions and prevailed over heterosis regarding survival during the whole embryonic development. Notably, the post-hatching survival of all between population crosses was approximately 15 % lower than the survival of within-population crosses under hypoxic conditions. Different hypoxia reaction norms for post-hatching survival, length and time to hatch were also noticed among within and between populations crosses further indicating outbreeding depression. These results demonstrate that consequences of outbreeding can dramatically vary depending on environmental conditions with outbreeding depression being possibly stronger under stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armbruster, P., Bradshaw, W. E., & Holzapfel, C. M. (1997). Evolution of the genetic architecture underlying fitness in the pitcher-plant mosquito, Wyeomyia smithii. Evolution, 51, 451–458.

    Article  Google Scholar 

  • Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0, http://CRAN.R-project.org/package=lme4.

  • Beacham, T. D., & Murray, C. B. (1989). Variation in developmental biology of Sockeye salmon (Onchorhynchus nerka) and Chinook salmon (Onchorynchus tshawytscha) in British-Columbia. Canadian Journal of Zoology, 67, 2081–2089.

    Article  Google Scholar 

  • Beacham, T. D., & Murray, C. B. (1990). Temperature, egg size and development of embryos and alevins of five species of pacific salmon—a comparative analysis. Transactions of the American Fisheries Society, 119, 927–945.

    Article  Google Scholar 

  • Belkhir, K., Borsa, P., Goudet, J., Chikhi, L., & Bonhomme, F. (1996). Genetix, logiciel sous Windows™ pour la génétique des populations. Laboratoire Génome et Populations, Université de Montpellier II.

  • Bourret, V., Dionne, M., Kent, M. P., Lien, S., & Bernatchez, L. (2013). Landscape genomics in Atlantic salmon (Salmo salar): Searching for gene-environment interactions driving local adaptation. Evolution, 67, 3469–3487.

    Article  Google Scholar 

  • Brunke, M. (1999). Colmation and depth filtration within streambeds: Retention of particles in hyporheic interstices. International Review of Hydrobiology, 84, 99–117.

    CAS  Google Scholar 

  • Bryden, C. A., Heath, J. W., & Heath, D. D. (2004). Performance and heterosis in farmed and wild Chinook salmon (Oncorhynchus tshawytscha) hybrid and purebred crosses. Aquaculture, 235, 249–261.

    Article  Google Scholar 

  • Burke, J. M., & Arnold, M. L. (2001). Genetics and the fitness of hybrids. Annual Review of Genetics, 35, 31–52.

    Article  CAS  PubMed  Google Scholar 

  • Busch, J. W. (2006). Heterosis in an isolated, effectively small, and self-fertilizing population of the flowering plant Leavenworthia alabamica. Evolution, 60, 184–191.

    Article  PubMed  Google Scholar 

  • Clark, E., Stelkens, R. B., & Wedekind, C. (2013). Parental influences on pathogen resistance in brown trout embryos and effects of outcrossing within a river network. PLoS ONE, 8, 1–10.

    Google Scholar 

  • Côte, J., Roussel, J. M., Le Cam, S., Bal, G., & Evanno, G. (2012). Population differences in response to hypoxic stress in Atlantic salmon. Journal of Evolutionary Biology, 25, 2596–2606.

    Article  PubMed  Google Scholar 

  • Coutellec, M. A., & Caquet, T. (2011). Heterosis and inbreeding depression in bottlenecked populations: A test in the hermaphroditic freshwater snail Lymnaea stagnalis. Journal of Evolutionary Biology, 24, 2248–2257.

    Article  PubMed  Google Scholar 

  • Crespel, A., Audet, C., Bernatchez, L., & Garant, D. (2012). Effects of rearing environment and strain combination on heterosis in brook trout (Salvelinus fontinalis). North American Journal of Aquaculture, 74, 188–198.

    Article  Google Scholar 

  • Crespel, A., Bernatchez, L., Garant, D., & Audet, C. (2011). Quantitative genetic analysis of the physiological stress response in three strains of brook charr Salvelinus fontinalis and their hybrids. Journal of Fish Biology, 79, 2019–2033.

    Article  CAS  PubMed  Google Scholar 

  • Dann, T. H., Smoker, W. W., Hard, J. J., & Gharrett, A. J. (2010). Outbreeding depression after two generations of hybridizing southeast Alaska coho salmon populations? Transactions of the American Fisheries Society, 139, 1292–1305.

    Article  Google Scholar 

  • Darwish, T. L., & Hutchings, J. A. (2009). Genetic variability in reaction norms between farmed and wild backcrosses of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 66, 83–90.

    Article  CAS  Google Scholar 

  • Debes, P. V., Normandeau, E., Fraser, D. J., Bernatchez, L., & Hutchings, J. A. (2012). Differences in transcription levels among wild, domesticated, and hybrid Atlantic salmon (Salmo salar) from two environments. Molecular Ecology, 21, 2574–2587.

    Article  CAS  PubMed  Google Scholar 

  • Dionne, M., Caron, F., Dodson, J. J., & Bernatchez, L. (2008). Landscape genetics and hierarchical genetic structure in Atlantic salmon: The interaction of gene flow and local adaptation. Molecular Ecology, 17, 2382–2396.

    Article  CAS  PubMed  Google Scholar 

  • Dumas, J., Olaizola, M., & Barriere, L. (2007). Egg-to-fry survival of Atlantic salmon (Salmo Salar L.) in a river of the southern edge of its distribution area, the nivelle. Bulletin Français de la Pêche et de la Pisciculture, 384, 39–59.

    Article  Google Scholar 

  • Edmands, S. (1999). Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution, 53, 1757–1768.

    Article  Google Scholar 

  • Edmands, S. (2007). Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16, 463–475.

    Article  PubMed  Google Scholar 

  • Edmands, S., & Deimler, J. K. (2004). Local adaptation, intrinsic coadaptation and the effects of environmental stress on interpopulation hybrids in the copepod Tigriopus californicus. Journal of Experimental Marine Biology and Ecology, 303, 183–196.

    Article  Google Scholar 

  • Einfeldt, C. H. P., Ceccarelli, S., Grando, S., Gland-Zwerger, A., & Geiger, H. H. (2005). Heterosis and mixing effects in barley under drought stress. Plant Breeding, 124, 350–355.

    Article  Google Scholar 

  • Einum, S., & Fleming, I. A. (2000). Selection against late emergence and small offspring in Atlantic salmon (Salmo salar). Evolution, 54, 628–639.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, J. S., Gilbey, J., & Armstrong, A. (2011). Microsatellite standardization and evaluation of genotyping error in a large multi-partner research program for conservation of Atlantic salmon (Salmo salar L.). Genetica, 139, 353–367.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Escobar, J. S., Nicot, A., & David, P. (2008). The different sources of variation in inbreeding depression, heterosis and outbreeding depression in a metapopulation of Physa acuta. Genetics, 180, 1593–1608.

    Article  PubMed Central  PubMed  Google Scholar 

  • Favre, A., & Karrenberg, S. (2011). Stress tolerance in closely related species and their first-generation hybrids: A case study of Silene. Journal of Ecology, 99, 1415–1423.

    Article  Google Scholar 

  • Fenster, C. B., & Galloway, L. F. (2000). Inbreeding and outbreeding depression in natural populations of Chamaecrista fasciculata (Fabaceae). Conservation Biology, 14, 1406–1412.

    Article  Google Scholar 

  • Fleming, I. A., Hindar, K., Mjolnerod, I. B., Jonsson, B., Balstad, T., & Lamberg, A. (2000). Lifetime success and interactions of farm salmon invading a native population. Proceedings of the Royal Society of London Series B-Biological Sciences, 267, 1517–1523.

    Article  CAS  Google Scholar 

  • Fraser, D. J., Cook, A. M., Eddington, J. D., Bentzen, P., & Hutchings, J. A. (2008). Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: Complexities in hybrid fitness. Evolutionary Applications, 1, 501–512.

    Article  PubMed Central  Google Scholar 

  • Fraser, D. J., Houde, A. L. S., Debes, P. V., O’Reilly, P., Eddington, J. D., & Hutchings, J. A. (2010a). Consequences of farmed-wild hybridization across divergent wild populations and multiple traits in salmon. Ecological Applications, 20, 935–953.

    Article  PubMed  Google Scholar 

  • Fraser, D. J., Minto, C., Calvert, A. M., Eddington, J. D., & Hutchings, J. A. (2010b). Potential for domesticated-wild interbreeding to induce maladaptive phenology across multiple populations of wild Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 67, 1768–1775.

    Article  Google Scholar 

  • Fraser, D. J., Weir, L. K., Darwish, T. L., Eddington, J. D., & Hutchings, J. A. (2007). Divergent compensatory growth responses within species: Linked to contrasting migrations in salmon? Oecologia, 153, 543–553.

    Article  PubMed  Google Scholar 

  • Garant, D., Fleming, I. A., Einum, S., & Bernatchez, L. (2003). Alternative male life-history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations. Ecology Letters, 6, 541–549.

    Article  Google Scholar 

  • Garant, D., Fontaine, P. M., Good, S. P., Dodson, J. J., & Bernatchez, L. (2002). The influence of male parental identity on growth and survival of offspring in Atlantic salmon (Salmo salar). Evolutionary Ecology Research, 4, 537–549.

    Google Scholar 

  • Gharrett, A. J., Smoker, W. W., Reisenbichler, R. R., & Taylor, S. G. (1999). Outbreeding depression in hybrids between odd- and even-broodyear pink salmon. Aquaculture, 173, 117–129.

    Article  Google Scholar 

  • Gilk, S. E., Wang, I. A., Hoover, C. L., Smoker, W. W., Taylor, S. G., Gray, A. K., et al. (2004). Outbreeding depression in hybrids between spatially separated pink salmon, Oncorhynchus gorbuscha, populations: Marine survival, homing ability, and variability in family size. Environmental Biology of Fishes, 69, 287–297.

    Article  Google Scholar 

  • Goudet, J. (1995). Fstat version 1.2: A computer program to calculate F statistics. Journal of Heredity, 86, 485–486.

    Google Scholar 

  • Granier, S., Audet, C., & Bernatchez, L. (2011). Heterosis and outbreeding depression between strains of young-of-the-year brook trout (Salvelinus fontinalis). Canadian Journal of Zoology, 89, 190–198.

    Article  Google Scholar 

  • Greig, S. M., Sear, D. A., & Carling, P. A. (2007). A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos. Hydrological Processes, 21, 323–334.

    Article  Google Scholar 

  • Hall, B. K. (2005). Fifty years later: I. Michael Lerner’s genetic homeostasis (1954)—a valiant attempt to integrate genes, organisms and environment. Journal of Experimental Zoology Part B Molecular and Developmental Evolution, 304B, 187–197.

    Article  Google Scholar 

  • Harwood, A. J., Griffiths, S. W., Metcalfe, N. B., & Armstrong, J. D. (2003). The relative influence of prior residency and dominance on the early feeding behaviour of juvenile Atlantic salmon. Animal Behaviour, 65, 1141–1149.

    Article  Google Scholar 

  • Haugen, T. O., & Vollestad, L. A. (2000). Population differences in early life-history traits in grayling. Journal of Evolutionary Biology, 13, 897–905.

    Article  Google Scholar 

  • Hendry, A. P., Wenburg, J. K., Bentzen, P., Volk, E. C., & Quinn, T. P. (2000). Rapid evolution of reproductive isolation in the wild: Evidence from introduced salmon. Science, 290, 516–518.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, A. A., & Parsons, P. A. (1991). Evolutionary genetics and environmental stress. Oxford: Oxford University Press.

    Google Scholar 

  • Houde, A. L. S., Fraser, D. J., O’Reilly, P., & Hutchings, J. A. (2011). Relative risks of inbreeding and outbreeding depression in the wild in endangered salmon. Evolutionary Applications, 4, 634–647.

    Article  PubMed Central  Google Scholar 

  • Huff, D. D., Miller, L. M., Chizinski, C. J., & Vondracek, B. (2011). Mixed-source reintroductions lead to outbreeding depression in second-generation descendents of a native North American fish. Molecular Ecology, 20, 4246–4258.

    Article  PubMed  Google Scholar 

  • Ingvarsson, P. K., & Whitlock, M. C. (2000). Heterosis increases the effective migration rate. Proceedings of the Royal Society of London Series B-Biological Sciences, 267, 1321–1326.

    Article  CAS  Google Scholar 

  • Jacob, A., Evanno, G., von Siebenthal, B. A., Grossen, C., & Wedekind, C. (2010). Effects of different mating scenarios on embryo viability in brown trout. Molecular Ecology, 19, 5296–5307.

    Article  PubMed  Google Scholar 

  • Jensen, L. F., Hansen, M. M., Pertoldi, C., Holdensgaard, G., Mensberg, K. L. D., & Loeschcke, V. (2008). Local adaptation in brown trout early life-history traits: Implications for climate change adaptability. Proceedings of the Royal Society B-Biological Sciences, 275, 2859–2868.

    Article  PubMed Central  Google Scholar 

  • Lerner, I. M. (1954). Genetic homeostasis. New York: John Wiley.

    Google Scholar 

  • Lynch, M. (1991). The genetic interpretation of inbreeding depression and outbreeding depression. Evolution, 45, 622–629.

    Article  Google Scholar 

  • Malcolm, I. A., Youngson, A. F., & Soulsby, C. (2003). Survival of salmonid eggs in a degraded gravel-bed stream: Effects of groundwater-surface water interactions. River Research and Applications, 19, 303–316.

    Article  Google Scholar 

  • Marr, A. B., Keller, L. F., & Arcese, P. (2002). Heterosis and outbreeding depression in descendants of natural immigrants to an inbred population of song sparrows (Melospiza melodia). Evolution, 56, 131–142.

    Article  PubMed  Google Scholar 

  • Massa, F., Grimaldi, C., Bagliniere, J. L., & Prunet, P. (1998). Evolution des caractéristiques physico-chimiques de deux zones de frayères à sédimentation contrastée et premiers résultats de survie embryo-larvaire de truite commune (Salmo trutta). Bulletin Français de la Pêche et de la Pisciculture, 350(351), 359–376.

    Article  Google Scholar 

  • McClelland, E. K., Myers, J. M., Hard, J. J., Park, L. K., & Naish, K. A. (2005). Two generations of outbreeding in coho salmon (Oncorhynchus kisutch): Effects on size and growth. Canadian Journal of Fisheries and Aquatic Sciences, 62, 2538–2547.

    Article  Google Scholar 

  • McClelland, E. K., & Naish, K. A. (2007). What is the fitness outcome of crossing unrelated fish populations? A meta-analysis and an evaluation of future research directions. Conservation Genetics, 8, 397–416.

    Article  Google Scholar 

  • McGinnity, P., Prodohl, P., Ferguson, K., Hynes, R., O’Maoileidigh, N., Baker, N., et al. (2003). Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 2443–2450.

    Article  Google Scholar 

  • Metcalfe, N. B., & Thorpe, J. E. (1992). Early predictors of life-history events—the link between 1st feeding date, dominance and seaward migration in Atlantic salmon, Salmo salar L. Journal of Fish Biology, 41, 93–99.

    Article  Google Scholar 

  • Ojanguren, A. F., Reyes-Gavilan, F. G., & Munoz, R. R. (1999). Effects of temperature on growth and efficiency of yolk utilisation in eggs and pre-feeding larval stages of Atlantic salmon. Aquaculture International, 7, 81–87.

    Article  Google Scholar 

  • Palmer, C. A., & Edmands, S. (2000). Mate choice in the face of both inbreeding and outbreeding depression in the intertidal copepod Tigriopus californicus. Marine Biology, 136, 693–698.

    Article  Google Scholar 

  • Pederson, D. G. (1968). Environmental stress, heterozygote advantage and genotype-environment interaction in Arabidopsis. Heredity, 23, 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Peer, K., & Taborsky, M. (2005). Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution, 59, 317–323.

    Article  PubMed  Google Scholar 

  • Perrier, C., Baglinière, J. L., & Evanno, G. (2013). Understanding admixture patterns in supplemented populations: A case study combining molecular analyses and temporally explicit simulations in Atlantic salmon. Evolutionary Applications, 6, 218–230.

    Article  PubMed Central  PubMed  Google Scholar 

  • Perrier, C., Guyomard, R., Bagliniere, J. L., & Evanno, G. (2011). Determinants of hierarchical genetic structure in Atlantic salmon populations: Environmental factors vs. anthropogenic influences. Molecular Ecology, 20, 4231–4245.

    Article  PubMed  Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York, LLC: Springer.

    Book  Google Scholar 

  • Pritchard, J. K., Stephens, P., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Remington, D. L., & O’Malley, D. M. (2000). Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution, 54, 1580–1589.

    Article  CAS  PubMed  Google Scholar 

  • Rhymer, J. M., & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27, 83–109.

    Article  Google Scholar 

  • Roussel, J. M. (2007). Carry-over effects in brown trout (Salmo trutta): Hypoxia on embryos impairs predator avoidance by alevins in experimental cihannels. Canadian Journal of Fisheries and Aquatic Sciences, 64, 786–792.

    Article  Google Scholar 

  • Schierup, M. H., & Christiansen, F. B. (1996). Inbreeding depression and outbreeding depression in plants. Heredity, 77, 461–468.

    Article  Google Scholar 

  • Smoker, W. W., Wang, I. A., Gharrett, A. J., & Hard, J. J. (2004). Embryo survival and smolt to adult survival in second-generation outbred coho salmon. Journal of Fish Biology, 65, 254–262.

    Article  Google Scholar 

  • Solberg, M. F., Kvamme, B. O., Nilsen, F., & Glover, A. (2012). Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin. BMC Research Notes, 5, 672.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solberg, M. F., Skaala, O., Nilsen, F., & Glover, A. (2013). Does domestication cause changes in growth reaction norms? A study of farmed, wild and hybrid Atlantic salmon families exposed to environmental stress. PLoS ONE, 8, 1–11.

    Google Scholar 

  • Soulsby, C., Youngson, A. F., Moir, H. J., & Malcolm, I. A. (2001). Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: A preliminary assessment. Science of the Total Environment, 265, 295–307.

    Article  CAS  PubMed  Google Scholar 

  • Tymchuk, W. E., Sundström, L. F., & Devlin, R. H. (2007). Growth and survival trade-offs and outbreeding depression in rainbow trout (Onchorhynchus mykiss). Evolution, 61, 1225–1237.

    Article  PubMed  Google Scholar 

  • Wang, I. A., Gilk, S. E., Smoker, W. W., & Gharrett, A. J. (2007). Outbreeding effect on embryo development in hybrids of allopatric pink salmon (Oncorhynchus gorbuscha) populations, a potential consequence of stock translocation. Aquaculture, 272, 152–160.

    Article  Google Scholar 

  • Wang, I. A., Leder, E. H., Smoker, W. W., & Gharrett, A. J. (2006). Timing of development during epiboly in embryos of second-generation crosses and backcrosses between odd- and even-broodyear pink salmon, Oncorhynchus gorbuscha. Environmental Biology of Fishes, 75, 325–332.

    Article  Google Scholar 

  • Waser, N. M., & Price, M. V. (1985). Reciprocal transplant experiments with Delphinium Nelsonii (Ranunculaceae)—evidence for local adaptation. American Journal of Botany, 72, 1726–1732.

    Article  Google Scholar 

  • Waser, N. M., & Price, M. V. (1994). Crossing distance effects in Delphinium Nelsonii—outbreeding and inbreeding depression in progeny fitness. Evolution, 48, 842–852.

    Article  Google Scholar 

  • Waters, T. F. (1995). Sediments in streams, sources, biological effects, and control (p. 7). Bethesda, MD: American Fisheries Society Monograph.

    Google Scholar 

  • Willett, C. S. (2012). Hybrid breakdown weakens under thermal stress in population crosses of the copepod Tigriopus californicus. Journal of Heredity, 103, 103–114.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following colleagues from INRA ‘Unité Expérimentale d’Ecologie et d’Ecotoxicologie Aquatique’ for their help during experiments: D. Azam, P. Delaunay, A. Gallard, N. Jeannot, B. Joseph, C. Lacoste, F. Marchand, A. Quémeneur, C. Saget and J. Tremblay. We are also grateful to the following people who helped to capture Atlantic salmon or provided environmental data on the rivers studied: A. Baisez, D. Balestin, A. Bardonnet, D. Barracou, E. Bussy, R. Delanoë, P. Etchécopar, P. Gaudin, Y. Guilloux, M. Hoffman, D. Huteau, F. Lange, C. Lousto, Y. Moulia, P. Martin, Y. Moello, E. Prévost, J. Rancon and V. Vauclin. We thank S. Blanchet, P. David, D. Fraser and two anonymous referees for their helpful comments on a previous draft of the manuscript. SLC was supported by a Grant from Plan Loire Grandeur Nature (project no 34108) to GE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Côte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Côte, J., Roussel, JM., Le Cam, S. et al. Outbreeding Depression in Atlantic Salmon Revealed by Hypoxic Stress During Embryonic Development. Evol Biol 41, 561–571 (2014). https://doi.org/10.1007/s11692-014-9289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-014-9289-0

Keywords

Navigation