Skip to main content
Log in

Mullite Plasma Spraying for In Situ Repair of Cracks in Mullite Refractories: Simultaneous Optimization of Porosity and Thickness by Statistical Design of Experiments

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

We report a laboratory-scale study about the suitability of the plasma spraying process for “in situ” repair of cracks in mullite refractories of industrial furnaces. The “design of experiments” approach is used to investigate how the coating porosity and thickness are influenced by six experimental parameters. Arc current, secondary gas (H2) flow rate, and stand-off distance are the most significant parameters for both responses. Several interaction terms also affect significantly the thickness response. The validity of the model equations is discussed both from a statistical point of view and regarding the physical credibility of the main model terms. Additional experiments confirm that the measured properties lie into the prediction intervals provided by the model. Using a set of parameters optimized for minimal porosity and high thickness (relevant for the crack repair application), coatings with 6% porosity and 1070 μm thickness can be prepared reproducibly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. More precisely, we reject the null hypothesis that Regression Variance = Residual Variance.

  2. More precisely, we do not reject the null hypothesis that the lack of fit error is not significantly greater than the pure error.

References

  1. G. Bolleli, V. Canillo, C. Lugli, L. Lusvarghi, and T. Manfredini, Plasma-Sprayed Graded Ceramic Coatings on Refractory Materials for Improved Chemical Resistance, J. Eur. Ceram. Soc., 2006, 26, p 2561-2579

    Article  Google Scholar 

  2. C. Bartuli, L. Lusvarghi, T. Manfredini, and T. Valente, Thermal Spraying to Coat Traditional Ceramic Substrates: Case Studies, J. Eur. Ceram. Soc., 2007, 27, p 1615-1622

    Article  CAS  Google Scholar 

  3. I.G. Cano, S. Dosta, J.R. Miguel, and J.M. Guilemany, Production and Characterization of Metastable Al2O3-TiO2 Ceramic Materials, J. Mater. Sci., 2007, 42, p 9331-9335

    Article  CAS  Google Scholar 

  4. G. Mauer, D. Sebold, R. Vassen, and D. Stöver, Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics, J. Therm. Spray Technol., 2012, 21, p 363-371

    Article  CAS  Google Scholar 

  5. P. Fauchais, Understanding Plasma Spraying, J. Phys. D: Appl. Phys., 2004, 37, p R86-R108

    Article  CAS  Google Scholar 

  6. L. Palowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008

    Book  Google Scholar 

  7. J.F. Li, H.L. Liao, C.X. Ding, and C. Coddet, Optimizing the Plasma Spray Process Parameters of Yttria Stabilized Zirconia Coating Using a Uniform Design of Experiments, J. Mater. Process. Technol., 2005, 160, p 34-42

    Article  CAS  Google Scholar 

  8. Y. Wang and T.W. Coyle, Optimization of Solution Precursor Plasma Spray Process by Statistical Design of Experiment, J. Therm. Spray Technol., 2008, 17, p 692-699

    Article  CAS  Google Scholar 

  9. T. Lundsted, E. Seifert, L. Abramo, B. Thelin, A. Nyström, J. Pettersen, and R. Bergman, Experimental Design and Optimization, Chemom. Intell. Lab. Syst., 1998, 42, p 3-40

    Article  Google Scholar 

  10. C. Pierlot, L. Pawloski, M. Bigan, and P. Chagon, Design of Experiments in Thermal Spraying: A Review, Surf. Coat. Technol., 2008, 202, p 4483-4490

    Article  CAS  Google Scholar 

  11. H. Schneider, K. Okada, and J.A. Pask, Mullite and Mullite Ceramics, Wiley, New York, 1994

    Google Scholar 

  12. P. Rohan, K. Neufuss, J. Matejicek, J. Dubský, L. Prchlík, and C. Holzgartner, Thermal and Mechanical Properties of Cordierite, Mullite and Steatite Produced by Plasma Spraying, Ceram. Int., 2004, 30, p 597-603

    Article  CAS  Google Scholar 

  13. S. Seifert, E. Litovsky, J.I. Kleiman, and R.B. Heimann, Thermal Resistance and Apparent Thermal Conductivity of Thin Plasma-Sprayed Mullite Coatings, Surf. Coat. Technol., 2006, 200, p 3404-3410

    Article  CAS  Google Scholar 

  14. K.N. Lee, R.A. Miller, and N.S. Jacobson, New Generation of Plasma-Sprayed Mullite Coatings on Silicon Carbide, J. Am. Ceram. Soc., 1995, 78, p 705-710

    Article  CAS  Google Scholar 

  15. K.N. Lee, Contamination Effects on Interfacial Porosity During Cyclic Oxidation of Mullite-Coated Silicon Carbide, J. Am. Ceram. Soc., 1998, 81, p 3329-3332

    Article  CAS  Google Scholar 

  16. K.N. Lee, Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics, J. Eng. Gas Turbines Power, 2000, 122, p 632-636

    Article  CAS  Google Scholar 

  17. P.H. McCluskey, Plasma Sprayed Mullite Coatings on Silicon Based Ceramic Materials, U.S. Patent 5,869,146, 1999

  18. D.C. Montgomery, Design and Analysis of Experiments, 3rd ed., Wiley, New York, 1991

    Google Scholar 

  19. N.R. Draper and H. Smith, Applied Regression Analysis, 2nd ed., Wiley, New York, 1998

    Google Scholar 

  20. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures, 2nd ed., Wiley, New York, 1974, p 532-534

    Google Scholar 

  21. T. Koschlig and R. Lallament, Analysis of Porosity and Cracks in Cross Sections of Plasma Sprayed Oxide Coating, Proceeding of the International Thermal Spray Conference, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., ASM International, Singapore, 28-30 May 2001, p 627-632

  22. B. Guillaume, F. Boschini, I. Garcia-Cano, A. Rulmont, R. Cloots, and M. Ausloos, Optimization of BaZrO3 Sintering by Control of the Initial Powder Size Distribution: A Factorial Design Statistical Analysis, J. Eur. Ceram. Soc., 2005, 25, p 3593-3604

    Article  CAS  Google Scholar 

  23. L. Erikson, E. Johansson, N. Kettaneh-Wold, C. Wikström, and S. Wold, Design of Experiments: Principles and Applications, Umetrics Academy, Stockholm, 2000

    Google Scholar 

  24. F. Qunbo, W. Lu, and W. Fuchi, Modeling Influence of Basic Operation Parameters on Plasma Jet, J. Mater. Process. Technol., 2008, 198, p 207-212

    Article  Google Scholar 

  25. P. Fauchais and G. Montavon, Plasma Spraying: From Plasma Generation to Coating Structure, Adv. Heat Transf., 2007, 40, p 205-344

    Article  CAS  Google Scholar 

  26. E. Pfender and C.H. Chang, Plasma Spray Jets and Plasma-Particulate Interaction Modeling and Experiments, Proceeding of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Nice, 25-29 May 1998, p 315-327

  27. M. Bertagnoli, M. Marchese, and G. Jaccuci, Thermomechanical Simulation of the Splashing of Ceramic Droplets on a Rigid Substrate, J. Comput. Phys., 1997, 133, p 205-216

    Article  Google Scholar 

  28. P. Fauchais and A. Vardelle, Heat, Mass and Momentum Transfer in Coating Formation by Plasma Spraying, Int. J. Therm. Sci., 2000, 39, p 852-870

    Article  CAS  Google Scholar 

  29. M. Vardelle, A. Vardelle, P. Fauchais, K.I. Li, B. Dussoubs, and N.J. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10, p 267-284

    Article  CAS  Google Scholar 

  30. J.R. Fincke, D.M. Crawford, S.C. Snyder, W.D. Swank, D.C. Haggard, and R.L. Williamson, Entrainment in High-Velocity, High-Temperature Plasma Jets. Part I: Experimental Results, Int. J. Heat Mass Transf., 2003, 46, p 4201-4213

    Article  CAS  Google Scholar 

  31. M. Vardelle, A. Vardelle, and P. Fauchais, Spray Parameters and Particles Behavior Relationships During Plasma Spraying, J. Therm. Spray Technol., 1993, 2, p 79-92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Walloon Region under a first enterprise subvention (Project PLASMAREPA—Grant agreement no. 5651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schrijnemakers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrijnemakers, A., Francq, B.G., Cloots, R. et al. Mullite Plasma Spraying for In Situ Repair of Cracks in Mullite Refractories: Simultaneous Optimization of Porosity and Thickness by Statistical Design of Experiments. J Therm Spray Tech 22, 1133–1139 (2013). https://doi.org/10.1007/s11666-013-9952-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9952-5

Keywords

Navigation