Skip to main content
Log in

Process Integrated Heat Treatment of a Microalloyed Medium Carbon Steel: Microstructure and Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Air-water spray cooling was employed during a heat treatment to enhance the mechanical properties of microalloyed medium carbon steel test cylinders (38MnVS6, 88 mm diameter). Using appropriate cooling times and intensities, the test cylinders’ surfaces could be quenched and subsequently self-tempered by the residual heat of the core. Simultaneously, it was possible to keep the core regions of the cylinders in the bainitic regime and carry out a quasi-isothermal holding. The resulting microstructures consisted of tempered martensite (near-surface) and bainite with pearlite and ferrite (core). Compared to the standard heat treatment (controlled air cooling), the tensile properties (proof stress and ultimate tensile strength) could be improved for both near-surface and core regions with the adapted spray cooling. A hardness profile with 450 HV10 surface hardness and a hardening depth of more than 11 mm could be realized. In addition, an increase of the impact toughness for the core was achieved, resulting in approximately 25 J charpy impact energy. This is a substantial improvement compared to standard heat treatment procedure and values reported in the literature and can be attributed to the reduced pearlite volume fraction and the increased amount of fine bainite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Huchtemann and V. Schüler, Entwicklungsstand der ausscheidungshärtenden ferritisch-perlitischen (AFP-) Stähle mit Vanadinzusatz für eine geregelte Abkühlung von der Warmformgebungstemperatur (Stage of development of precipitation hardening, ferritic-perlitic steels with vanadium for controlled cooling from forging temperature), Technische Berichte - Thyssen-Edelstahl, 1990, 16(1), p 3–11 (in German)

    Google Scholar 

  2. D. Naylor, Microalloyed Forging Steels, Mater. Sci. Forum, 1998, 284–286, p 83–94

    Article  Google Scholar 

  3. W. Bleck, C. Keul, and B. Zeislmair, Entwicklung eines höherfesten mikrolegierten ausscheidungshärtenden ferritisch/perlitischen Schmiedestahls AFP-M (The development of a high-strength, microalloyed, precipitation hardening, ferritic-perlitic formed steel AFP-M), Schmiede J., 2010, 3, p 42–44 (in German)

    Google Scholar 

  4. R. Kaspar, I. Gonzalez-Baquet, J. Richter, G. Nussbaum, and A. Kothe, New Post Forging Treatment of Medium Carbon Microalloyed Steels, Steel Res., 1997, 68(6), p 266–271

    Google Scholar 

  5. I. González-Baquet, R. Kaspar, J. Richter, G. Nussbaum, and A. Kothe, Influence of Microalloying on the Mechanical Properties of Medium Carbon Forging Steels After a Newly Designed Post Forging Treatment, Steel Res., 1997, 68(12), p 534–540

    Google Scholar 

  6. D. Rasouli, S.K. Asl, A. Akbarzadeh, and G. Daneshi, Effect of Cooling Rate on the Microstructure and Mechanical Properties of Microalloyed Forging Steel, J. Mater. Process. Technol., 2008, 206(1–3), p 92–98

    Article  Google Scholar 

  7. T. Gretzki, D. Rodman, L. Wolf, A. Dalinger, C. Krause, T. Hassel, and F.-W. Bach, Economic Surface Hardening by Spray Cooling, HTM, 2011, 66(5), p 290–296

    Article  Google Scholar 

  8. D. Rodman, C. Krause, F. Nürnberger, F.-W. Bach, K. Haskamp, M. Kästner, and E. Reithmeier, Induction Hardening of Spur Gearwheels Made from 42CrMo4 Hardening and Tempering Steel by Employing Spray Cooling, Steel Res. Int., 2011, 82(4), p 329–336

    Article  Google Scholar 

  9. F. Nürnberger, M. Diekamp, J. Moritz, L. Wolf, S. Hübner, B.-A. Behrens, Spray Cooling of Early Extracted Hot Stamped Parts, TMS 2014 Supplemental Proceedings, Wiley, 2014, p 983–990

  10. M. Nowak, O. Golovko, F. Nürnberger, I. Frolov, and M. Schaper, Water-Air Spray Cooling of Extruded Profiles: Process Integrated Heat Treatment of the Alloy EN AW-6082, J. Mater. Eng. Perform., 2013, 22(9), p 2580–2587

    Article  Google Scholar 

  11. W. Bleck, Abschlussbericht des AiF-Vorhabens IGF FV LN 8 “EcoForge – Energieeffiziente Produktion von Hochleistungsbauteilen“, Teilprojekt 1 "Tieftemperatur-Umwandlungsvorgänge in hochfesten Schmiedestählen", (Final report on the research project "Ecoforge – Energy efficient production of high performance parts"), 2014 (in German)

  12. F. Ishikawa, T. Takahashi, and T. Ochi, Intragranular Ferrite Nucleation in Medium-Carbon Vanadium Steels, Metall. Mater. Trans. A, 1994, 25(5), p 929–936

    Article  Google Scholar 

  13. H.K.D.H. Bhadeshia, Bainite in steels. Transformations, microstructure and properties. IOM Communications, London, 2001

  14. L. Ceschini, A. Marconi, C. Martini, A. Morri, and A. Di Schino, Tensile and Impact Behaviour of a Microalloyed Medium Carbon Steel: Effect of the Cooling Condition and Corresponding Microstructure, Mater. Des., 2013, 45, p 171–178

    Article  Google Scholar 

  15. I. Gutiérrez, Effect of Microstructure on the Impact Toughness of Nb-Microalloyed Steel: Generalisation of Existing Relations from Ferrite-Pearlite to High Strength Microstructures, Mater. Sci. Eng. A, 2013, 571, p 57–67

    Article  Google Scholar 

  16. J.P. Houin, A. Simon, and G. Beck, Relationship Between Structure and Mechanical Properties of Pearlite Between 0.2% and 0.8%C, ISIJ Int., 1981, 21(10), p 726–731

    Article  Google Scholar 

  17. D. François, Micromechanics and the Charpy Transition Curve, From Charpy to Present Impact Testing, D. François, A. Pineau, Ed., Elsevier, Amsterdam, London, 2002, p 21–32

  18. J. Flügge, The Appearance of Cracks and Fractures in Metallic Materials, Stahleisen, Düsseldorf, 1996

    Google Scholar 

  19. S. Shanmugam, N.K. Ramisetti, R. Misra, T. Mannering, D. Panda, and S. Jansto, Effect of Cooling Rate on the Microstructure and Mechanical Properties of Nb-Microalloyed Steels, Mater. Sci. Eng. A, 2007, 460–461, p 335–343

    Article  Google Scholar 

  20. V. Khlestov, E. Konopleva, and H. McQueen, Kinetics of Austenite Transformation During Thermomechanical Processes, Can. Metall. Q., 1998, 37(2), p 75–89

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Foundation (DFG) for financial support within the Project NU297/2-1 and the Institut für Umformtechnik und Umformmaschinen (IFUM) of the Leibniz Universität Hannover for supplying the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Herbst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbst, S., Schledorn, M., Maier, H.J. et al. Process Integrated Heat Treatment of a Microalloyed Medium Carbon Steel: Microstructure and Mechanical Properties. J. of Materi Eng and Perform 25, 1453–1462 (2016). https://doi.org/10.1007/s11665-016-2004-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2004-9

Keywords

Navigation