Skip to main content

Advertisement

Log in

Effect of Reheating Temperature and Cooling Treatment on the Microstructure, Texture, and Impact Transition Behavior of Heat-Treated Naval Grade HSLA Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to achieve the desired mechanical properties [YS > 390 MPa, total elongation >16 pct and Charpy impact toughness of 78 J at 213 K (−60 °C)] for naval application, samples from a low-carbon microalloyed steel have been subjected to different austenitization (1223 K to 1523 K) (950 °C to 1250 °C) and cooling treatments (furnace, air, or water cooling). The as-rolled steel and the sample air cooled from 1223 K (950 °C) could only achieve the required tensile properties, while the sample furnace cooled from 1223 K (950 °C) showed the best Charpy impact properties. Water quenching from 1223 K (950 °C) certainly contributed to the strength but affected the impact toughness. Overall, predominantly ferrite matrix with fine effective grain size and intense gamma-fiber texture was found to be beneficial for impact toughness as well as impact transition behavior. Small size and fraction of precipitates (like TiN, Nb, and V carbonitrides) eliminated the possibility of particle-controlled crack propagation and grain size-controlled crack propagation led to cleavage fracture. A simplified analytical approach has been used to explain the difference in impact transition behavior of the investigated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. L. H. R.W. Hertzberg, R.P. Vinci, Deformation and Fracture Mechanics of Engineering Materials, Wiley New York, 1996.

    Google Scholar 

  2. S. Y. Shin, B. Hwang, S. Lee, N. J. Kim, and S. S. Ahn, Mater. Sci. Eng. A, 2007, vol. 458, pp. 281-289.

    Article  Google Scholar 

  3. H. J. Jun, J. S. Kang, D. H. Seo, K. B. Kang, and C. G. Park, Mater. Sci. Eng. A, 2006, vol. 422, pp. 157-162.

    Article  Google Scholar 

  4. Y. Terada, M. Yamashita, T. Hara, H. Tamehiro, and N. Ayukawa, Nippon Steel Tech. Rep., 1997, issue. 72, pp. 47–52.

  5. B. K. Show, R. Veerababu, R. Balamuralikrishnan, and G. Malakondaiah, Mater. Sci. Eng. A, 2010, vol. 527, pp. 1595–1604.

    Article  Google Scholar 

  6. T. Gladman, The Physical Metallurgy of Microalloyed Steels, Maney, London, 2002.

    Google Scholar 

  7. M. A. Linaza, J. L. Romero, J. M. Rodríguez-Ibabe, and J. J. Urcola, Scr. Metall. Mater., 1995, vol. 32, pp. 395-400.

    Article  Google Scholar 

  8. A. Ghosh, A. Ray, D. Chakrabarti, and C. L. Davis, Mater. Sci. Eng. A, 2013, vol. 561, pp. 126-135.

    Article  Google Scholar 

  9. A. Ghosh, S. Sahoo, M. Ghosh, R. N. Ghosh, and D. Chakrabarti, Mater. Sci. Eng. A, 2014, vol. 613, pp. 37-47.

    Article  Google Scholar 

  10. R. Balamuralikrishnan, Studies of Bonding and Void Nucleation at Inclusion-Matrix Interfaces in Steel, Carnegie Mellon University, Pittsburgh, 1998.

    Google Scholar 

  11. M.-C. Kim, Y. Jun Oh, and J. Hwa Hong, Scr. Mater., 2000, vol. 43, pp. 205-211.

    Article  Google Scholar 

  12. D. Bhattacharjee and C. L. Davis, Scr. Mater., 2002, vol. 47, pp. 825-830.

    Article  Google Scholar 

  13. A. Ghosh, S. Kundu, and D. Chakrabarti, Scr. Mater., 2014, vol. 81, pp. 8-11.

    Article  Google Scholar 

  14. B. Hwang, C. G. Lee, and S.-J. Kim, Metall. Mater. Trans. A, 2011, vol. 42, pp. 717-728.

    Article  Google Scholar 

  15. D. Chakrabarti, C. Davis, M. Strangwood, Mater. Charact., 2007, vol. 58, pp. 423-438.

    Article  Google Scholar 

  16. ASTM E8: Annual Book of ASTM Standards. ASTM, West Conshohocken, PA, 2009.

    Google Scholar 

  17. ASTM E23: Annu. B. ASTM Stand. ASTM, West Conshohocken, PA, 2009.

    Google Scholar 

  18. Y. Sakai, K. Tamanoi, and N. Ogura, Nucl. Eng. Des., 1989, vol. 115, pp. 31-39.

    Article  Google Scholar 

  19. D. Chakrabarti, M. Strangwood, and C. Davis, Metall. Mater. Trans. A, 2009, vol. 40, pp. 780-795.

    Article  Google Scholar 

  20. A. Echeverría, and J. M. Rodriguez-Ibabe, Mater. Sci. Eng. A, 2003, vol. 346, pp. 149-158.

    Article  Google Scholar 

  21. S. Patra, A. Ghosh, J. Sood, L. K. Singhal, A. S. Podder, D. Chakrabarti, Mater. Des., 2016, vol. 106, pp. 336-348.

    Article  Google Scholar 

  22. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A. K. Bhaduri, Mater. Sci. Eng. A, 2014, vol. 618, pp. 219-231.

    Article  Google Scholar 

  23. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A. K. Bhaduri, Mater. Sci. Eng. A, 2015, vol. 630, pp. 58-70.

    Article  Google Scholar 

  24. F. G. Caballero, H. Roelofs, S. Hasler, C. Capdevila, J. Chao, J. Cornide, and C. Garcia-Mateo, Mater. Sci. Technol., 2012, vol. 28, pp. 95-102.

    Article  Google Scholar 

  25. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, Acta Mater., 2006, vol. 54, pp. 5323-5331.

    Article  Google Scholar 

  26. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki, ISIJ Int., 2005, vol. 45, pp. 91-94.

    Article  Google Scholar 

  27. R. K. Ray, J. J. Jonas, Int. Mater. Rev., 1990, vol. 35, pp. 1-36.

    Article  Google Scholar 

  28. F. G. Caballero, J. Chao, J. Cornide, C. García-Mateo, M. J. Santofimia, and C. Capdevila, Mater. Sci. Eng. A, 2009, vol. 525, pp. 87-95.

    Article  Google Scholar 

  29. R. K. Ray, J. J. Jonas, R. E. Hook, Int. Mater. Rev., 1994, vol. 39, pp. 129-172.

    Article  Google Scholar 

  30. T. Tomida, M. Wakita, M. Yasuyama, S. Sugaya, Y. Tomota, S. C. Vogel, Acta Mater., 2013, vol. 61, pp. 2828-2839.

    Article  Google Scholar 

  31. R. Horstman, K. Lieb, R. Meltzer, I. Moore, W. L. Server, J. Test. Eval., 1978, vol. 6, pp. 29.

    Article  Google Scholar 

  32. J.F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London, 1976.

    Google Scholar 

  33. D. Bhattacharjee, J. F. Knott, and C. L. Davis, Metall. Mater. Trans. A, 2004, vol. 35, pp. 121-130.

    Article  Google Scholar 

  34. K. Shibanuma and S. Aihara, Tetsu-to-Hagane, 2012, vol. 98, pp. 184-189.

    Article  Google Scholar 

  35. S. Aihara and Y. Tanaka, Acta Mater., 2011, vol. 59, pp. 4641-4652.

    Article  Google Scholar 

  36. H.K.D.H. Bhadeshia, Bainite in Steel, Second edition, IOM Communications, London, 1991.

    Google Scholar 

  37. T. Saario, K. Wallin, and K. Torronen, J. Eng. Mater. Technol., 1984, vol. 106, pp. 173-177.

    Article  Google Scholar 

  38. D. A. Curry, J. F. Knott, Met. Sci., 1978, vol. 12, pp. 511-514.

    Article  Google Scholar 

  39. C. Yan, J. H. Chen, J. Sun, and Z. Wang, Metall. Trans. A, 1993, vol. 24, pp. 1381-1389.

    Article  Google Scholar 

  40. A. A. Griffith, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 1921, vol. 221, pp. 163-198.

    Article  Google Scholar 

  41. E. Orowan, Trans. Inst. Eng. Shipbuild. Scotl., 1946, vol. 80, pp. 165-196.

    Google Scholar 

  42. C. Zener, Trans. ASM, 1948, vol. 40 A, pp. 3-31.

    Google Scholar 

  43. A. N. Stroh, Proc. R. Soc. A Math. Phys. Eng. Sci., 1954, vol. 223, pp. 404-414.

    Article  Google Scholar 

  44. E. Smith: Proceedings of the conference on physical basis of yield and fracture. Institute of Physics and the Physical Society, Oxford, 1966, p. 36.

  45. A. H. Cottrell, Trans. AIME, 1958, vol. 212, pp. 192-203.

    Google Scholar 

  46. D. Hull, Acta Metall., 1960, vol. 8, pp. 11-18.

    Article  Google Scholar 

  47. T. Lindley, G. Oates, and C. Richards, Acta Metall., 1970, vol. 18, pp. 1127-1136.

    Article  Google Scholar 

  48. P. Bowen, S. G. Druce, and J. F. Knott, Acta Metall., 1986, vol. 34, pp. 1121-1131.

    Article  Google Scholar 

  49. N. J. Petch, Acta Metall., 1986, vol. 34, pp. 1387-1393.

    Article  Google Scholar 

  50. J. San Martin, JI; Rodriguez-Ibabe, Scr. Mater., 1999, vol. 40, pp. 459-464.

    Article  Google Scholar 

  51. J. H. Chen, G. Z. Wang, C. Yan, H. Ma, and L. Zhu, Int. J. Fract., 1997, vol. 83, pp. 139-157.

    Article  Google Scholar 

  52. D. P. Fairchild, D. G. Howden, and W. A. T. Clark, Metall. Mater. Trans. A, 2000, vol. 31, pp. 653-667.

    Article  Google Scholar 

  53. L. P. Zhang, C. L. Davis, and M. Strangwood, Metall. Mater. Trans. A, 2001, vol. 32, pp. 1147-1155.

    Article  Google Scholar 

  54. W. Yan, Y. Y. Shan, and K. Yang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, vol. 38, pp. 1211-1222.

    Article  Google Scholar 

  55. P. Bowen, J.F. Knott, Metals. Sci., 1984, vol. 18, pp. 225-235.

    Article  Google Scholar 

  56. S. Kim, S. Lee, B. S. Lee, Mater. Sci. Eng. A, 2003, vol. 359, pp. 198-209.

    Article  Google Scholar 

  57. C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Scripta Materialia, 2008, vol. 58, pp. 492-495.

    Article  Google Scholar 

  58. L. Rancel, M. Gómez, S.F. Medinaa, I. Gutierrez, Materials Science and Engineering A, 2011, vol. 530, pp. 21–27.

    Article  Google Scholar 

  59. A.R. Rosenfield, P.K. Dai, and G.T. Hahn, International Conference on Fracture. 1 St, Sendai, Japan, 1966, pp. 223–58.

  60. G.H.A.R. Rosenfield: ASM Trans. Quart., 1966, vol. 59, pp. 962–80.

  61. W. Lei, X. Van, and M. Yao, Eng. Fract. Mech., 1993, vol. 46, pp. 583-593.

    Article  Google Scholar 

  62. B. Tanguy, R. Piques, L. Laiarinandrasana, A. Pineau, and C. Mat, Pap. Ref. 5N.206, 2013.

  63. P. Larour, A. Bäumer, K. Dahmen, and W. Bleck, Steel Res. Int., 2013, vol. 84, pp. 426-442.

    Article  Google Scholar 

  64. K. Shibanuma, S. Aihara, K. Suzuki, Engineering Fracture Mechanics, 2016, vol. 151, pp. 161–180.

    Article  Google Scholar 

  65. K. Shibanuma, S. Aihara, K. Suzuki, Engineering Fracture Mechanics, 2016, vol. 151, pp. 181–202.

    Article  Google Scholar 

Download references

Acknowledgments

Experimental facilities provided by Department of MME and CRF, IIT Kharagpur and financial support provided by Materials Panel of Naval Research Board (NRB), New Delhi, Science and Engineering Research Board, SERB, and the equipment grant provided by SRIC, IIT Kharagpur (under SGIRG scheme) is gratefully acknowledged. Authors are also grateful to Mr. S. Sahoo from the Technology Division of Tata Steel, Jamshedpur for his experimental support behind the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Basiruddin Sk.

Additional information

Manuscript submitted August 30, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sk, M.B., Ghosh, A., Rarhi, N. et al. Effect of Reheating Temperature and Cooling Treatment on the Microstructure, Texture, and Impact Transition Behavior of Heat-Treated Naval Grade HSLA Steel. Metall Mater Trans A 48, 3231–3247 (2017). https://doi.org/10.1007/s11661-017-4099-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4099-5

Keywords

Navigation