Skip to main content
Log in

First-Principles Calculations on Thermoelectric Properties of Layered Transition Metal Phosphides MP2 (M = Ni, Pd, Pt)

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Very recently, a stable structure of layered transition metal phosphides MP2 (M = Ni, Pd and Pt) has been discovered. This study reveals that these three materials are semiconductor materials with a direct band gap (0.5–0.85 eV) and also have very high hole and electron mobility. The electron mobility of the PtP2 monolayer is surprisingly as high as 14.4 × 104 cm2 V−1 s−1. Based on their excellent electronic properties, herein we predict the thermoelectric (TE) performance of MP2 monolayers by using first-principles and Boltzmann transport equation. The calculation results show that the single-layer NiP2, PdP2 and PtP2 have low lattice thermal conductivity 7.6 W m−1 K−1, 9.0 W m−1 K−1 and 17.8 W m−1 K−1 at room temperature, respectively, which is mainly caused by the small phonon group velocity, low relaxation time, high Grüneisen parameter and large phonon scattering phase space. Because of the ultra-high carrier mobility and the highly degenerate band structure, MP2 monolayers have large Seebeck coefficient, and the value of PdP2 reaches up to 283 μV K−1 at 300 K. The good phonon and electrical transport properties give the MP2 monolayers a high TE figure of merit (ZT). The maximum ZT of NiP2 and PdP2 monolayers at 500 K is 1.52 (p-type) and 1.95 (n-type), respectively, and the corresponding concentration of maximum ZT MP2 monolayers is around 1011 cm−2. Overall, our work indicates that the MP2 monolayers are the promising candidates in TE applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, and D.J. Singh, J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, and D.J. Singh, npj Comput. Mater., 2016, 2, p 15015.

    Article  CAS  Google Scholar 

  2. Y. Chen, T. Jayasekera, A. Calzolari, K.W. Kim, and M.B. Nardelli, Y. Chen, T. Jayasekera, A. Calzolari, K.W. Kim, and M.B. Nardelli, J. Phys. Condens. Matter, 2010, 22, p 372202.

    Article  CAS  Google Scholar 

  3. R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, and L. Yang, R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, and L. Yang, Nano Lett., 2014, 14, p 6393.

    Article  CAS  Google Scholar 

  4. J.D. Wood, S.A. Wells, D. Jariwala, K.S. Chen, E. Cho, V.K. Sangwan, X. Liu, L.J. Lauhon, T.J. Marks, and M.C. Hersam, J.D. Wood, S.A. Wells, D. Jariwala, K.S. Chen, E. Cho, V.K. Sangwan, X. Liu, L.J. Lauhon, T.J. Marks, and M.C. Hersam, Nano Lett., 2014, 14, p 6964.

    Article  CAS  Google Scholar 

  5. Y. Jing, Y. Ma, Y. Li, and T. Heine, Y. Jing, Y. Ma, Y. Li, and T. Heine, Nano Lett., 2017, 17, p 1833.

    Article  CAS  Google Scholar 

  6. S. Sun, F. Meng, H. Wang, H. Wang, and Y. Ni, S. Sun, F. Meng, H. Wang, H. Wang, and Y. Ni, J. Mater. Chem. A, 2018, 6, p 11890.

    Article  CAS  Google Scholar 

  7. N. Lu, Z. Zhuo, H. Guo, P. Wu, W. Fa, X. Wu, and X.C. Zeng, N. Lu, Z. Zhuo, H. Guo, P. Wu, W. Fa, X. Wu, and X.C. Zeng, J. Phys. Chem. Lett., 2018, 9, p 1728.

    Article  CAS  Google Scholar 

  8. N. Miao, B. Xu, N.C. Bristowe, J. Zhou, and Z. Sun, N. Miao, B. Xu, N.C. Bristowe, J. Zhou, and Z. Sun, J. Am. Chem. Soc., 2017, 139, p 11125.

    Article  CAS  Google Scholar 

  9. T. Ouyang, E. Jiang, C. Tang, J. Li, C. He, and J. Zhong, T. Ouyang, E. Jiang, C. Tang, J. Li, C. He, and J. Zhong, J. Mater. Chem. A, 2018, 6, p 21532.

    Article  CAS  Google Scholar 

  10. X.-L. Zhu, P.-F. Liu, J. Zhang, P. Zhang, W.-X. Zhou, G. Xie, and B.-T. Wang, X.-L. Zhu, P.-F. Liu, J. Zhang, P. Zhang, W.-X. Zhou, G. Xie, and B.-T. Wang, Nanoscale, 2019, 11, p 19923.

    Article  CAS  Google Scholar 

  11. S. Qian, X. Sheng, X. Xu, Y. Wu, N. Lu, Z. Qin, J. Wang, C. Zhang, E. Feng, W. Huang, and Y. Zhou, S. Qian, X. Sheng, X. Xu, Y. Wu, N. Lu, Z. Qin, J. Wang, C. Zhang, E. Feng, W. Huang, and Y. Zhou, J. Mater. Chem. C, 2019, 7, p 3569.

    Article  CAS  Google Scholar 

  12. B. Ghosh, S. Puri, A. Agarwal, and S. Bhowmick, B. Ghosh, S. Puri, A. Agarwal, and S. Bhowmick, J. Phys. Chem. C, 2018, 122, p 18185.

    Article  CAS  Google Scholar 

  13. G. Kresse, and J. Furthmüller, G. Kresse, and J. Furthmüller, Phys. Rev. B, 1996, 54, p 11169.

    Article  CAS  Google Scholar 

  14. P.E. Blöchl, P.E. Blöchl, Phys. Rev. B, 1994, 50, p 17953.

    Article  Google Scholar 

  15. G. Kresse, and D. Joubert, G. Kresse, and D. Joubert, Phys. Rev. B, 1999, 59, p 1758.

    Article  CAS  Google Scholar 

  16. K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, and D.C. Langreth, K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, and D.C. Langreth, Phys. Rev. B, 2010, 82, p 081101.

    Article  CAS  Google Scholar 

  17. A. Togo, and I. Tanaka, A. Togo, and I. Tanaka, Scr. Mater., 2015, 108, p 1.

    Article  CAS  Google Scholar 

  18. W. Li, N. Mingo, L. Lindsay, D.A. Broido, D.A. Stewart, and N.A. Katcho, W. Li, N. Mingo, L. Lindsay, D.A. Broido, D.A. Stewart, and N.A. Katcho, Phys. Rev. B, 2012, 86, p 174307.

    Article  CAS  Google Scholar 

  19. W. Li, J. Carrete, N.A. Katcho, and N. Mingo, W. Li, J. Carrete, N.A. Katcho, and N. Mingo, Comput. Phys. Commun., 2014, 185, p 1747.

    Article  CAS  Google Scholar 

  20. G.K. Madsen, and D.J. Singh, G.K. Madsen, and D.J. Singh, Comput. Phys. Commun., 2006, 175, p 67.

    Article  CAS  Google Scholar 

  21. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys., 2003, 118, p 8207.

    Article  CAS  Google Scholar 

  22. L. Chaput, P. Pécheur, and H. Scherrer, L. Chaput, P. Pécheur, and H. Scherrer, Phys. Rev. B, 2007, 75, p 045116.

    Article  CAS  Google Scholar 

  23. D. Parker, and D.J. Singh, D. Parker, and D.J. Singh, Phys. Rev. B, 2010, 82, p 035204.

    Article  CAS  Google Scholar 

  24. P. Price, P. Price, Ann. Phys., 1981, 133, p 217.

    Article  CAS  Google Scholar 

  25. J. Xi, M. Long, L. Tang, D. Wang, and Z. Shuai, J. Xi, M. Long, L. Tang, D. Wang, and Z. Shuai, Nanoscale, 2012, 4, p 4348.

    Article  CAS  Google Scholar 

  26. D. Wee, B. Kozinsky, N. Marzari, and M. Fornari, D. Wee, B. Kozinsky, N. Marzari, and M. Fornari, Phys. Rev. B, 2010, 81, p 045204.

    Article  CAS  Google Scholar 

  27. Z.Z. Zhou, H.J. Liu, D.D. Fan, G.H. Cao, and C.Y. Sheng, Z.Z. Zhou, H.J. Liu, D.D. Fan, G.H. Cao, and C.Y. Sheng, Phys. Rev. B, 2019, 99, p 085410.

    Article  Google Scholar 

  28. Z. Gao, F. Tao, and J. Ren, Z. Gao, F. Tao, and J. Ren, Nanoscale, 2018, 10, p 12997.

    Article  CAS  Google Scholar 

  29. Z. Gao, Z. Zhang, G. Liu, and J.-S. Wang, Z. Gao, Z. Zhang, G. Liu, and J.-S. Wang, Phys. Chem. Chem. Phys., 2019, 21, p 26033.

    Article  CAS  Google Scholar 

  30. L.-D. Zhao, V.P. Dravid, and M.G. Kanatzidis, L.-D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci., 2014, 7, p 251.

    Article  CAS  Google Scholar 

  31. Z.M. Gibbs, F. Ricci, G. Li, H. Zhu, K. Persson, G. Ceder, G. Hautier, A. Jain, and G.J. Snyder, Z.M. Gibbs, F. Ricci, G. Li, H. Zhu, K. Persson, G. Ceder, G. Hautier, A. Jain, and G.J. Snyder, npj Comput. Mater., 2017, 3, p 1.

    Article  CAS  Google Scholar 

  32. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature, 2011, 473, p 66.

    Article  CAS  Google Scholar 

  33. A.J.H. McGaughey, E.S. Landry, D.P. Sellan, and C.H. Amon, A.J.H. McGaughey, E.S. Landry, D.P. Sellan, and C.H. Amon, Appl. Phys. Lett., 2011, 99, p 131904.

    Article  CAS  Google Scholar 

  34. G. Xie, Y. Guo, X. Wei, K. Zhang, L. Sun, J. Zhong, G. Zhang, and Y.-W. Zhang, G. Xie, Y. Guo, X. Wei, K. Zhang, L. Sun, J. Zhong, G. Zhang, and Y.-W. Zhang, Appl. Phys. Lett., 2014, 104, p 233901.

    Article  CAS  Google Scholar 

  35. G. Xie, Z. Ju, K. Zhou, X. Wei, Z. Guo, Y. Cai, and G. Zhang, G. Xie, Z. Ju, K. Zhou, X. Wei, Z. Guo, Y. Cai, and G. Zhang, npj Comput. Mater., 2018, 4, p 21.

    Article  CAS  Google Scholar 

  36. J.-H. Bahk, and A. Shakouri, J.-H. Bahk, and A. Shakouri, Appl. Phys. Lett., 2014, 105, p 052106.

    Article  CAS  Google Scholar 

  37. Q. Li, C. Liu, Y. Nie, W. Chen, X. Gao, X. Sun, and S. Wang, Q. Li, C. Liu, Y. Nie, W. Chen, X. Gao, X. Sun, and S. Wang, Nanoscale, 2014, 6, p 14538.

    Article  CAS  Google Scholar 

  38. M.-S. Lee, and S.D. Mahanti, M.-S. Lee, and S.D. Mahanti, Phys. Rev. B, 2012, 85, p 165149.

    Article  CAS  Google Scholar 

  39. T. Tadano, Y. Gohda, and S. Tsuneyuki, T. Tadano, Y. Gohda, and S. Tsuneyuki, Phys. Rev. Lett., 2015, 114, p 095501.

    Article  CAS  Google Scholar 

  40. J. Bardeen, and W. Shockley, J. Bardeen, and W. Shockley, Phys. Rev., 1950, 80, p 72.

    Article  CAS  Google Scholar 

  41. W. Yi, X. Chen, Z. Wang, Y. Ding, B. Yang, and X. Liu, W. Yi, X. Chen, Z. Wang, Y. Ding, B. Yang, and X. Liu, J. Mater. Chem., 2019, 7, p 7352.

    CAS  Google Scholar 

  42. M. Jonson, and G.D. Mahan, M. Jonson, and G.D. Mahan, Phys. Rev. B., 1980, 21, p 4223.

    Article  CAS  Google Scholar 

  43. L. Yang, Z.-G. Chen, M. Hong, L. Wang, D. Kong, L. Huang, G. Han, Y. Zou, M. Dargusch, and J. Zou, L. Yang, Z.-G. Chen, M. Hong, L. Wang, D. Kong, L. Huang, G. Han, Y. Zou, M. Dargusch, and J. Zou, Nano Energy, 2017, 31, p 105.

    Article  CAS  Google Scholar 

  44. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater., 2015, 3, p 041506.

    Article  CAS  Google Scholar 

  45. K. Hippalgaonkar, Y. Wang, Y. Ye, D.Y. Qiu, H. Zhu, Y. Wang, J. Moore, S.G. Louie, and X. Zhang, K. Hippalgaonkar, Y. Wang, Y. Ye, D.Y. Qiu, H. Zhu, Y. Wang, J. Moore, S.G. Louie, and X. Zhang, Phys. Rev. B, 2017, 95, p 115407.

    Article  Google Scholar 

  46. G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, H.-J. Cui, Q. Zheng, and G. Su, G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, H.-J. Cui, Q. Zheng, and G. Su, Sci. Rep., 2014, 4, p 6946.

    Article  CAS  Google Scholar 

  47. L. Hu, T. Zhu, X. Liu, and X. Zhao, L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater., 2014, 24, p 5211.

    Article  CAS  Google Scholar 

  48. Y. Liu, M. Zhou, and J. He, Y. Liu, M. Zhou, and J. He, Scr. Mater., 2016, 111, p 39.

    Article  CAS  Google Scholar 

  49. Y. Pei, H. Wang, and G.J. Snyder, Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater., 2012, 24, p 6125.

    Article  CAS  Google Scholar 

  50. X.L. Wu, S.J. Xiong, Z. Liu, J. Chen, J.C. Shen, T.H. Li, P.H. Wu, and P.K. Chu, X.L. Wu, S.J. Xiong, Z. Liu, J. Chen, J.C. Shen, T.H. Li, P.H. Wu, and P.K. Chu, Nat. Nanotechnol., 2011, 6, p 103.

    Article  CAS  Google Scholar 

  51. G. Ding, C. Wang, G. Gao, K. Yao, C. Dun, C. Feng, D. Li, and G. Zhang, G. Ding, C. Wang, G. Gao, K. Yao, C. Dun, C. Feng, D. Li, and G. Zhang, Nanoscale, 2018, 10, p 7077.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (NSFC) (Grant No. 11874145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Xie or Ning Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hy., Xie, G., Zhu, XL. et al. First-Principles Calculations on Thermoelectric Properties of Layered Transition Metal Phosphides MP2 (M = Ni, Pd, Pt). J. Electron. Mater. 50, 2510–2520 (2021). https://doi.org/10.1007/s11664-021-08774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08774-2

Keywords

Navigation