Skip to main content
Log in

Thermoelectric properties of PtX2 (X = Se, Te) monolayers

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Monolayers based on transition-metal dichalcogenides have potential materials for thermoelectric applications. In the present work, semi-classical Boltzmann transport theory along with density functional theory are used to investigate the structural, electronic and thermoelectric properties of PtX2 (X = Se, Te) monolayers. The monolayers have a hexagonal structure, and the corresponding lattice constants for PtSe2 and PtTe2 are a = b = 3.75 Å and a = b = 4.02 Å, respectively. Band gap measurements for PtSe2 and PtTe2 monolayers are 1.38 and 0.73 eV, respectively. PtSe2 and PtTe2 monolayers have lattice thermal conductivities of 2.40 and 1.66 Wm−1 K−1, respectively, at room temperature. The high value of the n-type monolayer Seebeck coefficient suggests that it is a more effective thermoelectric material when compared to p-type monolayers. At room temperature, the calculated figure of merit (ZT), which is temperature-dependent, has values for PtSe2 and PtTe2 monolayers of 0.68 and 0.72, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request to the corresponding author.

References

  1. H S Kim et al Proc. Natl. Acad. Sci. U S A. 112 8205 (2015)

    ADS  Google Scholar 

  2. S Tang and M Dresselhaus, https://doi.org/10.48550/arXiv.1406.1842 (2014)

  3. B Poudel et al Sci. 320 634 (2008)

    ADS  Google Scholar 

  4. D Wickramaratne et al J. Chem. Phys. 140 124710 (2014)

    ADS  Google Scholar 

  5. H Babaei et al Appl. Phys. Lett. 105 193901 (2014)

    ADS  Google Scholar 

  6. W-Li Tao et al J. Appl. Phys. 127 035101 (2020)

    ADS  Google Scholar 

  7. D Li et al Nano-micro Lett. 12 1 (2020)

    Google Scholar 

  8. P Yan et al RSC Adv. 9 12394 (2019)

    ADS  Google Scholar 

  9. S Kumar et al Chem. Mater. 27 1278 (2015)

    Google Scholar 

  10. G Ozbal et al Phy. Rev. B 100 085415 (2019)

    ADS  Google Scholar 

  11. K X Chen J. Phys. Chem. C. 119 26706 (2015)

    Google Scholar 

  12. Anisha et al J. Phys. Chem. Solids. 172 111083 (2023)

    Google Scholar 

  13. G Singh Phys. E: Low-Dimens. Syst. Nanostructures. 109 114 (2019)

    ADS  Google Scholar 

  14. P Z Jia et al J. Phys. Condens. Matter. 32 055302 (2020)

    ADS  Google Scholar 

  15. G Ding et al J. Appl. Phys. 124 165101 (2018)

    ADS  Google Scholar 

  16. X K Chen et al ACS Appl. Mater. Interfaces. 12 15517 (2020)

    Google Scholar 

  17. B U Haq et al J. Appl. Phys. 123 175107 (2018)

    ADS  Google Scholar 

  18. A Saini et al J. Alloys Compd. 859 158232 (2021)

    Google Scholar 

  19. X-K Chen et al J. Condens. Matter Phys. 32 153002 (2020)

    ADS  Google Scholar 

  20. Anisha et al Mater. Today Proc. 54 677 (2022)

    Google Scholar 

  21. Anisha et al Mater. Today Commun.. 34 105169 (2023)

    Google Scholar 

  22. M B Kanoun et al Mater. 12 100708 (2020)

    Google Scholar 

  23. R Kumar Appl. Phys. A . 127 635 (2021)

    ADS  Google Scholar 

  24. S Nag et al Phys. E: Low-Dimens. Syst. Nanostructures. 134 114814 (2021)

    Google Scholar 

  25. C Adessi et al Phys. Chem. Chem. Phys. 22 15048 (2020)

    Google Scholar 

  26. Z Yan et al 2D Mater. 5 031008 (2018)

    Google Scholar 

  27. S G-Said et al Crystals. 11 917 (2021)

    Google Scholar 

  28. S G-Said et al J. Solid State Chem. 312 123190 (2022)

    Google Scholar 

  29. M Zulfiqar et al Sci. Rep. 9 4571 (2019)

    ADS  MathSciNet  Google Scholar 

  30. S-D Guo J. Mater. Chem. C. 4 9366 (2016)

    Google Scholar 

  31. S-D Guo et al Semicond. Sci. Technol. 32 055004 (2017)

    ADS  Google Scholar 

  32. P Giannozzi et al J. Phys. Condens. Matter. 21 395502 (2009)

    Google Scholar 

  33. J P Perdew et al Phys. Rev. Lett. 77 3865 (1996)

    ADS  Google Scholar 

  34. F A Rasmussen et al J. Phys. Chem. C. 119 13169 (2015)

    Google Scholar 

  35. W Khan et al J. Magn. Magn. Mater. 432 574 (2017)

    ADS  Google Scholar 

  36. H J Monkhorst et al Phys. Rev. B. 13 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  37. J Bardeen et al Phys. Rev. 80 72 (1950)

    ADS  MathSciNet  Google Scholar 

  38. H Y Lv et al J. Mater. Chem. C. 4 4538 (2016)

    Google Scholar 

  39. Z Jin et al Sci. Rep. 5 18342 (2015)

    ADS  Google Scholar 

  40. A Togo et al Scr. Mater. 108 1 (2015)

    ADS  Google Scholar 

  41. G K Madsen et al Comput. Phys. Commun. 175 67 (2006)

    ADS  Google Scholar 

  42. A Togo et al Phys. Rev. B. 91 094306 (2015)

    ADS  Google Scholar 

  43. P Li et al J. Mater. Chem. C. 4 3106 (2016)

    ADS  Google Scholar 

  44. S Lebègue Phy. Rev. X. 3 031002 (2013)

    Google Scholar 

  45. H A H Mohammed et al Mater. Today Commun. 21 100661 (2019)

    Google Scholar 

  46. L Pi et al Adv. Funct. Mater. 29 1904932 (2019)

    Google Scholar 

  47. J Li et al ACS Nano. 15 13249 (2021)

    MathSciNet  Google Scholar 

  48. H Lv et al J. Mater. Chem. C. 4 4538 (2016)

    Google Scholar 

  49. S Nag et al Appl. Surf. Sci. 512 145640 (2020)

    Google Scholar 

  50. S Nag et al J. Phys.: Condens. Matter. 33 315705 (2021)

    Google Scholar 

  51. A Pandit et al J Mater Sci. 56 10424 (2021)

    ADS  Google Scholar 

  52. A F Wani et al Int J Energy Res. 1 (2022)

  53. G Qin et al Phys. Chem. Chem. Phys. 17 4854 (2015)

    Google Scholar 

  54. B D Kong et al Phys. Rev. B. 80 033406 (2009)

    ADS  Google Scholar 

  55. H Shi et al Phys. Rev. Appl. 3 014004 (2015)

    ADS  Google Scholar 

  56. T M Tritt Annual Rev. Mater. Res. 41 433 (2011)

    ADS  Google Scholar 

  57. K Kuroki et al J. Phys. Soc. Jpn. 76 083707 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

Anisha acknowledges University Grant Commission (UGC) India for providing financial support in the form of Senior Research Fellowship (Ref. No. 1584/CSIR-UGC NET JUNE 2019). All the authors are thankful to Pt. Deendayal Upadhyaya Innovation and Incubation Centre (PDUIIC), Guru Jambheshwar University of Science and Technology, Hisar, India, for setting the high-performance computational facility at Department of Physics, GJUS&T, Hisar. The authors also acknowledge Dr. Ranber Singh for his suggestions and fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the contents of the manuscript. Anisha conceptualized the text of the manuscript, and made the figures for paper and contributed in writing the manuscript and which has been revised by SS and Prof TK, and the proof reading of the manuscript has been done by RK, and the manuscript is prepared under the supervision of RK.

Corresponding author

Correspondence to Ramesh Kumar.

Ethics declarations

Conflict of interest

All the authors are declared that they do not have any conflict of interest regarding this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisha, Kumar, R., Srivastava, S. et al. Thermoelectric properties of PtX2 (X = Se, Te) monolayers. Indian J Phys 97, 3913–3920 (2023). https://doi.org/10.1007/s12648-023-02727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02727-7

Keywords

Navigation