Skip to main content
Log in

Study on Microstructure and Shear Property of Cu/In-xCu/Cu Transient Liquid Phase Bonding Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Transient liquid phase (TLP) bonding is a promising interconnection technology for high-temperature electronic packaging. In this paper, the effect of Cu particles on the microstructure and shear property of Cu/In-xCu/Cu TLP joints was investigated. The results show that Cu/In-xCu/Cu joint is mainly composed of an In and Cu11In9 phase after bonded for 60 min. A small amount of Cu2In phase forms at the interface of Cu/Cu11In9 with bonding time exceeding 300 min. The bonding efficiency and shear property of In-Cu mixed particle solder joint are superior to that of the In foil solder joint, because the bonding time was reduced and the shear strength of the solder joint was improved. The phase composition of Cu11In9 and Cu2In in the joint increased, the porosity decreased and the shear strength increased with increasing Cu content. When the Cu content of the In-xCu solder was 45 wt.%, the shear strength of the Cu/In-45Cu/Cu joint reached the peak value of 15.7 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sakiko and Y. Takeshi, JOM 70, 1 (2018).

    Article  Google Scholar 

  2. K. Li, P. Evans, and M. Johnson, IET Electr. Syst. Transp. 8, 3 (2018).

    Article  CAS  Google Scholar 

  3. K.S. Siow, S.T. Chua, and B.D. Beake, J. Mater. Sci-Mater. Electron. 30, 6212 (2019).

    Article  CAS  Google Scholar 

  4. V.R. Manikam and K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. 1, 457 (2011).

    Article  CAS  Google Scholar 

  5. Q. Xun, B. Xun, Z. Li, P.L. Wang, and Z.D. Cai, Renew. Sustain. Energy Rev. 70, 1336 (2017).

    Article  CAS  Google Scholar 

  6. H.K. Shao, A.P. Wu, Y.D. Bao, Y. Zhao, and G.S. Zou, Trans. Nonferr. Met. Soc. 27, 722 (2017).

    Article  CAS  Google Scholar 

  7. V.C. Nachiappan, J.H. Hattel, and J. Hald, Microelectron. Eng. 88, 981 (2011).

    Article  Google Scholar 

  8. W.M. Chen, P. Mccloskey, and S.C. O’Mathuna, Microelectron. Reliab. 46, 896 (2006).

    Article  CAS  Google Scholar 

  9. W. Nico, J. Shan, I.D. Liliana, and L. Christian, J. Mater. Eng. Perform. 23, 1585 (2014).

    Article  Google Scholar 

  10. J. Cho, R. Sheikhi, S. Mallampati, and Y. Liang, in ECTC Conference Proceedings (2017), p 1553.

  11. G. Wei, G.S. Zou, A.P. Wu, H.L. Bai, and J.L. Ren, Physica C 470, 115 (2010).

    Article  Google Scholar 

  12. J.N. Calata, T.G. Lei, and G.Q. Lu, Int. J. Mater. Product Technol. 34, 95 (2009).

    Article  CAS  Google Scholar 

  13. A. Sharif, C.L. Gan, and Z. Chen, J. Alloys Compd. 587, 365 (2014).

    Article  CAS  Google Scholar 

  14. F. Yu, H. Liu, C. Hang, and M.Y. Li, JOM 71, 3049 (2019).

    Article  CAS  Google Scholar 

  15. F. Brem, C. Liu and R. Déborah, in ESTC Conference Proceedings (2012), p 1.

  16. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 59, 1198 (2011).

    Article  CAS  Google Scholar 

  17. S.W. Yoon, M.D. Glover, and K. Shiozaki, IEEE Trans. Power Electron. 28, 2448 (2013).

    Article  Google Scholar 

  18. H. Shao, A. Wu, Y. Bao, Y. Zhao, and G. Zou, J. Mater. Sci-Mater. Electron. 27, 4839 (2016).

    Article  CAS  Google Scholar 

  19. T. Shuang, Z. Jian, X. Feng, R. Cao, and F. Wang, J. Mater. Sci-Mater. Electron. 29, 16388 (2018).

    Article  Google Scholar 

  20. H.Y. Zhao, J.H. Liu, Z.L. Li, X.G. Song, Y.X. Zhao, H.W. Niu, H. Tian, H.J. Dong, and J.C. Feng, Metall. Mater. Trans. A 49, 2739 (2018).

    Article  CAS  Google Scholar 

  21. P. Yao, X.Y. Li, X.B. Liang, B. Yu, F.Y. Jin, and Y. Li, Mater. Charact. 131, 49 (2017).

    Article  CAS  Google Scholar 

  22. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 58, 3429 (2010).

    Article  CAS  Google Scholar 

  23. A.A. Wronkowska, A. Wronkowski, and K. Kuklinski, Appl. Surf. Sci. 256, 4839 (2010).

    Article  CAS  Google Scholar 

  24. G.T. Lim, B.J. Kim, and K. Lee, J. Electron. Mater. 38, 2228 (2009).

    Article  CAS  Google Scholar 

  25. Y. Tian, C. Hang, X. Zhao, B. Liu, N. Wang, and C. Wang, J. Mater. Sci-Mater. Electron. 25, 4170 (2014).

    Article  CAS  Google Scholar 

  26. J.B. Lee, H.Y. Hwang, and M.W. Rhee, J. Electron. Mater. 44, 435 (2015).

    Article  CAS  Google Scholar 

  27. L. Litynska, J. Wojewoda, P. Zieba, M. Faryna, W. Gust, and E.J. Mittemeijer, Acta Mater. 145, 107 (2004).

    CAS  Google Scholar 

  28. Z. Wu, J. Cai, Q. Wang, J. Wang, and D. Wang, J. Electron. Mater. 46, 1 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Foundation No. 51865006) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 19KJA430001 and 18KJA460001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, L., Xu, Y.H. et al. Study on Microstructure and Shear Property of Cu/In-xCu/Cu Transient Liquid Phase Bonding Joints. J. Electron. Mater. 50, 217–223 (2021). https://doi.org/10.1007/s11664-020-08504-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08504-0

Keywords

Navigation