Skip to main content

Advertisement

Log in

Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Faizal and M. Rafiuddin Ahmed, Int. J. Energy Res. 35, 1119 (2011).

    Article  Google Scholar 

  2. H. Okamoto, T. Suzuki, K. Mori, Z. Cao, T. Onuki, and H. Kuwano, Int. J. Energy Res. 33, 1180 (2009).

    Article  Google Scholar 

  3. M. Lubieniecki and T. Uhl, J. Electron. Mater. 44, 1 (2015).

    Article  Google Scholar 

  4. M. Freunek, M. Müller, T. Ungan, W. Walker, and L. Reindl, J. Electron. Mater. 38, 1214 (2009).

    Article  Google Scholar 

  5. K. Li, H. Bian, C. Liu, D. Zhang, and Y. Yang, Renew. Sust. Energy Rev. 42, 1464 (2015).

    Article  Google Scholar 

  6. FdO Antonio, Renew. Sust. Energy Rev. 14, 899 (2010).

    Article  Google Scholar 

  7. R. Guigon, J.-J. Chaillout, T. Jager, and G. Despesse, Smart Mater. Struct. 17, 015039 (2008).

    Article  Google Scholar 

  8. R. Guigon, J.-J. Chaillout, T. Jager, and G. Despesse, Smart Mater. Struct. 17, 015038 (2008).

    Article  Google Scholar 

  9. D. Vatansever, R.L. Hadimani, T. Shah, and E. Siores, Smart Mater. Struct. 20, 055019 (2011).

    Article  Google Scholar 

  10. F. Viola, P. Romano, R. Miceli, and G. Acciari, International Conference on Clean Electrical Power (2013). doi:10.1109/ICCEP.2013.6586952

  11. M. Al Ahmad and G.E. Jabbour, Electron. Lett. 48, 647 (2012).

    Article  Google Scholar 

  12. V.-K. Wong, J.-H. Ho, and E.H. Yap, J. Intell. Mater. Syst. Struct. 1045389X14549871 (2014).

  13. M.A. Ilyas and J. Swingler, Energy 90, 796 (2015).

    Article  Google Scholar 

  14. R. Gunn and G.D. Kinzer, J. Meteorol. 6, 243 (1949).

    Article  Google Scholar 

  15. C.-H. Wong, J. Neoh, Z. Dahari, and A.A. Manaf, 8th International Conference on Robotic, Vision, Signal Processing & Power Applications (2014). doi:10.1007/978-981- 4585-42-2_45.

  16. K. Range and F. Feuillebois, J. Colloid Interface Sci. 203, 16 (1998).

    Article  Google Scholar 

  17. C.-H. Wong, Z. Dahari, A.A. Manaf, and M.A. Miskam, J. Electron. Mater. 44, 13 (2015).

    Article  Google Scholar 

  18. G. Gerald and D. Wolfarm, Introduction to Microsystem Technology: A Guide for Students (New York: Wiley, 2008), pp. 208–224.

    Google Scholar 

  19. T.-B. Xu, E.J. Siochi, J.H. Kang, L. Zuo, W. Zhou, X. Tang, and X. Jiang, Smart Mater. Struct. 22, 065015 (2013).

    Article  Google Scholar 

  20. C.-C. Ma, Y.-H. Huang, and S.-Y. Pan, Sensors 12, 2088 (2012).

    Article  Google Scholar 

  21. D.G. Khushalani, V.R. Dubey, P.P. Bheley, J.P. Kalambe, R.S. Pande, and R.M. Patrikar, Sens. Actuator A Phys. 225, 1 (2015).

    Article  Google Scholar 

  22. A.A.M. Ralib, A.N. Nordin, H. Salleh, and R. Othman, Microsyst. Technol. 18, 1761 (2012).

    Article  Google Scholar 

  23. N. Lobontiu, Mechanical Design of Microresonators: Modeling and Applications. McGraw-Hill Nanoscience and Technology Series (New York: McGraw-Hill, 2006), pp. 150–175.

    Google Scholar 

  24. P. Li, S. Gao, and H. Cai, Microsyst. Technol. 21, 401 (2015).

    Article  Google Scholar 

  25. W. Al-Ashtari, M. Hunstig, T. Hemsel, and W. Sextro, Sens. Actuator A Phys. 200, 138 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Research University Grant, Universiti Sains Malaysia, 1001/PELECT/814243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuraini Dahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.H., Dahari, Z. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System. J. Electron. Mater. 46, 1869–1882 (2017). https://doi.org/10.1007/s11664-016-5252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5252-4

Keywords

Navigation