Skip to main content
Log in

Interfacial reactions and shear strengths between Sn-Ag-based Pb-free solder balls and Au/EN/Cu metallization

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The morphological and compositional evolutions of intermetallic compounds (IMCs) formed at three Pb-free solder/electroless Ni-P interface were investigated with respect to the solder compositions and reflow times. The three Pb-free solder alloys were Sn3.5Ag, Sn3.5Ag0.75Cu, and Sn3Ag6Bi2In (in wt.%). After reflow reaction, three distinctive layers, Ni3Sn4 (or Ni-Cu-Sn for Sn3.5Ag0.75Cu solder), NiSnP, and Ni3P, were formed on the electroless Ni-P layer in all the solder alloys. For the Sn3.5Ag0.75Cu solder, with increasing reflow time, the interfacial intermetallics switched from (Cu,Ni)6Sn5 to (Cu,Ni)6Sn5+(Ni,Cu)3Sn4, and then to (Ni,Cu)3Sn4 IMCs. The degree of IMC spalling for the Sn3.5Ag0.75Cu solder joint was more than that of other solders. In the cases of the Sn3.5Ag and Sn3Ag6Bi2In solder joints, the growth rate of the Ni3P layer was similar because these two type solder joints had a similar interfacial reaction. On the other hand, for the Sn3.5Ag0.75Cu solder, the thickness of the Ni3P and Ni-Sn-P layers depended on the degree of IMC spalling. Also, the shear strength showed various characteristics depending on the solder alloys and reflow times. The fractures mainly occurred at the interfaces of Ni3Sn4/Ni-Sn-P and solder/Ni3Sn4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    CAS  Google Scholar 

  2. C.B. Lee, S.B. Jung, Y.E. Shin, and C.C. Shur, Mater. Trans. 42, 751 (2001).

    Article  CAS  Google Scholar 

  3. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, J. Mater. Res. 13, 2859 (1998).

    CAS  Google Scholar 

  4. J.W. Yoon, C.B. Lee, and S.B. Jung, Mater. Trans. 43, 1821 (2002).

    Article  Google Scholar 

  5. J. Glazer, Int. Mater. Rev. 40, 65 (1995).

    CAS  Google Scholar 

  6. C.B. Lee, J.W. Yoon, S.J. Suh, S.B. Jung, C.W. Yang, C.C. Shur, and Y.E. Shin, J. Mater. Sci. Mater. Electron. 14, 487 (2003).

    Article  CAS  Google Scholar 

  7. C.H. Raeder, L.E. Felton, V.A. Tanzi, and D.B. Knorr, J. Electron. Mater. 23, 611 (1994).

    CAS  Google Scholar 

  8. Z. Mei and J.W. Morris, Jr, J. Electron. Mater. 21, 599 (1992).

    CAS  Google Scholar 

  9. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).

    CAS  Google Scholar 

  10. K.N. Tu, A.M. Gusak, and M. Li, J. Appl. Phys. 93, 1335 (2003).

    Article  CAS  Google Scholar 

  11. Y.M. Chow, W.M. Lau, and Z.S. Karim, Surf. Interface Anal. 31, 321 (2001).

    Article  CAS  Google Scholar 

  12. J.W. Yoon, S.W. Kim, and S.B. Jung, Mater. Trans. 45, 727 (2004).

    Article  CAS  Google Scholar 

  13. J.W. Yoon and S.B. Jung, J. Mater. Sci. 39, 4211 (2004).

    Article  CAS  Google Scholar 

  14. R.M. Allen and J.B. Vandersande, Scripta Mater. 16, 1161 (1982).

    Article  CAS  Google Scholar 

  15. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Google Scholar 

  16. K.N. Tu and K. Zeng, Mater. Sci. Eng. R 34, 1 (2001).

    Google Scholar 

  17. J.W. Yoon, C.B. Lee, and S.B. Jung, J. Electron. Mater. 32, 1195 (2003).

    Article  CAS  Google Scholar 

  18. M.O. Alam, Y.C. Chan, and K.N. Tu, J. Appl. Phys. 94, 4108 (2003).

    Article  CAS  Google Scholar 

  19. C.B. Lee, I.Y. Lee, S.B. Jung, and C.C. Shur, Mater. Trans. 43, 751 (2002).

    Article  CAS  Google Scholar 

  20. S.K. Kang, W.K. Choi, M.J. Yim, and D.Y. Shih, J. Electron. Mater. 31, 1292 (2002).

    Article  CAS  Google Scholar 

  21. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, J. Appl. Phys. 88, 6359 (2000).

    Article  CAS  Google Scholar 

  22. K.C. Hung, Y.C. Chan, and C.W. Tang, J. Mater. Sci. Mater. Electron. 11, 587 (2000).

    Article  CAS  Google Scholar 

  23. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).

    Article  CAS  Google Scholar 

  24. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagram, 2nd ed. (Materials Park, OH: ASM International, 1990), pp. 794–796.

    Google Scholar 

  25. S.J. Wang and C.Y. Liu, Scripta Mater. 49, 813 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SW., Yoon, JW. & Jung, SB. Interfacial reactions and shear strengths between Sn-Ag-based Pb-free solder balls and Au/EN/Cu metallization. J. Electron. Mater. 33, 1182–1189 (2004). https://doi.org/10.1007/s11664-004-0121-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0121-y

Key words

Navigation