Skip to main content
Log in

Multi-channel Spiral Twist Extrusion (MCSTE): A Novel Severe Plastic Deformation Technique for Grain Refinement

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Multi-channel Spiral Twist Extrusion (MCSTE) is introduced as a novel severe plastic deformation (SPD) technique for producing superior mechanical properties associated with ultrafine grained structure in bulk metals and alloys. The MCSTE design is based on inserting a uniform square cross-sectioned billet within stacked disks that guarantee shear strain accumulation. In an attempt to validate the technique and evaluate its plastic deformation characteristics, a series of experiments were conducted. The influence of the number of MCSTE passes on the mechanical properties and microstructural evolution of AA1100 alloy were investigated. Four passes of MCSTE, at a relatively low twisting angle of 30 deg, resulted in increasing the strength and hardness coupled with retention of ductility. Metallographic observations indicated a significant grain size reduction of 72 pct after 4 passes of MCSTE compared with the as-received (AR) condition. Moreover, the structural uniformity increased with the number of passes, which was reflected in the hardness distribution from the peripheries to the center of the extrudates. The current study showed that the MCSTE technique could be an effective, adaptable SPD die design with a promising potential for industrial applications compared to its counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Estrin and A. Vinogrado: Acta Mater, 2013, vol. 61, pp. 782-817

    Article  Google Scholar 

  2. T.C. Lowe and R.V. Valiev: JOM, 2004, vol .56, pp. 64-68

    Article  Google Scholar 

  3. H. J. Hu, Y. L. Ying, Z.W. Ou, X.Q. Wang: Mater. Sci. Eng. A, 2017, vol. 695, pp. 360–366.

    Article  Google Scholar 

  4. A. Fadaei, F. Farahafshan, and S. Sepahi-Boroujeni: Mater. Des., 2017, vol. 113, pp. 361–368

    Article  Google Scholar 

  5. U. M. Iqbal, V.S. SenthilKumar, and S. Gopalakannan: Measurement, 2016, vol. 94, pp. 126–138

    Article  Google Scholar 

  6. A. Farhoumand, P. D. Hodgson, and S. Khoddam: J. Mater. Sci., 2013, vol. 48, pp. 2454-2461

    Article  Google Scholar 

  7. M. Ebrahimi, H. Gholipour, and F. Djavanroodi: Mater. Sci. Eng. A, 2016, vol. 650, pp. 1-7

    Article  Google Scholar 

  8. M. Ensafi, G. Faraji and H. Abdolvand: Mater. Lett., 2017, vol. 197, pp. 12–16

    Article  Google Scholar 

  9. H. Sheikh, R. Ebrahimi, and E. Bagherpour: Mater. Des., 2016, vol. 109, pp. 289–299

    Article  Google Scholar 

  10. M. Ebrahimi, and M. Shamsborhan: J. Alloys compd., 2017, vol. 705, pp. 28-37

    Article  Google Scholar 

  11. Y. Duan, L. Tang, G. Xu, Y. Deng, and Z. Yin: J. Alloys Compd., 2016, vol. 664, pp. 518-529

    Article  Google Scholar 

  12. Y. T. Zhu, T.G.Langdon, R. S. Mishra, S. L. Setniatin, M. J. Saran, and T. C. Lowe: Ultrafine Grained Materials II, John Wiley & Sons, Inc. Hoboken, NJ, 2002, pp.15-24

    Book  Google Scholar 

  13. B. Leszcztnska-Madej, M. W. Richert, and M. Perek-Nowa: Arch. Metall. Mater., 2015, vol. 60, pp. 1437-1440

    Google Scholar 

  14. T. Hinklin and K. Lu: Processing of Nanoparticle structures and composites, John Wiley & Sons, Inc. Hoboken, NJ, 2009, pp.11-22

    Book  Google Scholar 

  15. K. I. Khodary, H. G. Salem, and M.A. Zikry: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2184-2192

    Google Scholar 

  16. A. Nassef., S. Samy, and W. H. Elgaraihy (2015) J. Mater. 9, 131-136

    Google Scholar 

  17. H.G. Salem, W.H. El-Garaihy, and S. M. A. Rassoul: TMS 2012, Annu. Meet. Exhib., Suppl. Proc., 141st, Wiley, Hoboken, NJ, 2012, pp. 553–60.

  18. W.H. El-Garaihy, S. M. A. Rassoul, and H.G. Salem: Mater. Sci. Forum., 2014, Vol. 783-786, pp. 2623-2628

    Article  Google Scholar 

  19. A. Alhamidi, K. Edalati, and Z. Horita: Mater. Res., 2013, vol. 16, pp. 672-678

    Article  Google Scholar 

  20. H. J. Lee, J. K. Han, S. Janakiraman, B. Ahn, M. Kawasaki, and T. Langdon: J. Alloys Compd., 2016, vol. 686, pp.998-1007

    Article  Google Scholar 

  21. M. Murashkin, I. Sabirov, D. Prosvirnin, and S. Dobatkin: Metals, 2015, vol. 5, pp. 578-590

    Article  Google Scholar 

  22. T. S. Naser and G. Krallics: Acta. Polytech. Hungar., 2014,vol. 11, pp.103- 117

    Google Scholar 

  23. S. O. Gashti, A. F-alhosseini, Y. Mazaheri, and M. Keshavarz: J. Manf. Proc., 2016, vol. 22, pp.269-277

    Article  Google Scholar 

  24. M. Berta, D. Orlov, and P. Prangnell: Int. J. Mater. Res., 2007, vol. 98, pp. 200-204

    Article  Google Scholar 

  25. D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z. Horita: Mater. Trans., 2009, vol. 50, pp.96-100

    Article  Google Scholar 

  26. H. Zendehdel and A. Hassani: Mater. Des., 2012,vol. 37, pp.13-18

    Article  Google Scholar 

  27. Y. Beygelzimer, A. Reshetov, S. Synkov, O. Prokofevea, and R. Kulagin: J. Mater. Process. Technol. 2009, vol. 209, pp. 3650-3656

    Article  Google Scholar 

  28. S. R. Bahadori, S.A. Mousavi, and A. R. Shahab: Adv. Mater. Res., 2011, vol. 264-265, pp.183-187.

    Article  Google Scholar 

  29. D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z. Horita: Mater.Sci.Eng.A, 2008, vol. 519, pp. 105-111.

    Article  Google Scholar 

  30. Sh. R. Bahadori, K. Dehghani, and S.A.A. Mousavi: Mater.Lett., 2015, vol. 152, pp. 48-52

    Article  Google Scholar 

  31. S. V. Noor, A. R. Eivani, H. R. Jafarian, and M. Mirzaei: Mater. Sci. Eng. A, 2016, vol. 652, pp. 186–191

    Article  Google Scholar 

  32. Y.Beygelzimer, R. Kulagin, M. Latypov, and H. Kim: Met. Mater. Int., 2015, vol. 21, pp. 734-740

    Article  Google Scholar 

  33. M. I. Latypov, E. Yoon, D. Lee, R. Kulagin, Y. Beygelzimer, M. Salehi and H. Kim: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2232-2241

    Article  Google Scholar 

  34. W.H. El-Garaihy, and H.G. Salem: Multi-Channel Spiral Twist Extrusion. Provisional Patent US 62/492,456.

  35. F. J. Kalahroudi, A. Eivani, H. Jafarian, A. Amouri, and R. Gholizadeh: Mater. Sci. Eng. A, 2016, vol. 667, pp. 349-357

    Article  Google Scholar 

  36. M. Irania, and M. Joun, Russian Journal of Non-Ferrous Metals, 2017, Vol. 58, No. 6, pp. 632–638.

    Article  Google Scholar 

  37. J. Gi Kim, M. Latypov, N. Pardis, Y. E. Beygelzimer, H. S. Kim, Materials & Design, 2015, Vol. 83, pp. 858-865

    Article  Google Scholar 

  38. A. Reshetov, A. Korshunov, A. Smolyakov, Y. Beygelzimer, V. Varyukhin, I. Kaganova, and A. Morozov: Mater. Sci. Forum, 2011, vol. 667-669, pp. 851-856.

    Google Scholar 

  39. D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z. Horita: Mater. Sci. Eng. A, 2009, vol. 519, pp. 105-111

    Article  Google Scholar 

  40. A. Eivani, M. Hosseini, H. R. Jafariah, S. H. Mousavi Anijdan, and N. Park: Mater. Charact., 2017, vol. 130, pp. 204-2010

    Article  Google Scholar 

  41. D. Orlov, Y. Todaka, M. Umemoto, Y. Beygeelzimer, and N. Tsuji: Mater. Trans., 2012, vol. 53, pp. 17-25

    Article  Google Scholar 

  42. Y. T. Zhu and X. Liao: Nat. Mater., 2004, vol. 3, pp. 351-352

    Article  Google Scholar 

  43. Y.J. Li, W. Blum, and F. Breutinger: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 585-589

    Article  Google Scholar 

  44. Z. Horita,T. Fujinami, M. Nemoto, and T. G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31, pp.691-701

    Article  Google Scholar 

  45. Q. Wei, S. Cheng, K. T. Ramesh, and E. Ma: Sci. Eng. A, 2004, vol. 387, pp. 71-79

    Article  Google Scholar 

  46. Y.J. Li, and W. Blum: Phys. Stat. Solidi, 2005, vol. 202, pp. 119-121

    Article  Google Scholar 

  47. A. Molotnikov: Mater. Sci. Forum, 2008, vol. 584-586, pp 1051-1056

    Article  Google Scholar 

  48. S.Asghar, A. Mousavi and S. R. Bahador: JOM, 2011, vol. 63, pp. 69-76

    Article  Google Scholar 

  49. A. Loucif, R. B. Figueiredo, T. Baudin, F. Brisset, R. Chemam, and, T. G. Langdon: Mater. Sci. Eng. A, 2012, vol. 532, pp 139-145

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support extended by the Material Testing Laboratories in the Mechanical Engineering department, AUC by way of facilitating the use of the processing and testing equipment. Gratitude is also expressed to the Fresh Factory for Tools and Dies for their appreciable effort in manufacturing the MCSTE die.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Salem.

Additional information

Manuscript submitted October 5, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Garaihy, W.H., Fouad, D.M. & Salem, H.G. Multi-channel Spiral Twist Extrusion (MCSTE): A Novel Severe Plastic Deformation Technique for Grain Refinement. Metall Mater Trans A 49, 2854–2864 (2018). https://doi.org/10.1007/s11661-018-4621-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4621-4

Navigation