Skip to main content
Log in

A Comparative Study on the Hot Working Behavior of Inconel 718 and ALLVAC 718 Plus

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot compression tests were performed on Inconel 718 and ALLVAC 718 PLUS (718+) at temperatures and strain rates in ranges of 1223 K to 1373 K (950 °C to 1100 °C) and 0.001–1 s−1, respectively. Discontinuous yield behavior was observed in the flow curves of both alloys. For both alloys, the drop in stress at the yield point (yield drop) was maximized at 0.01 to 1 s−1. The alloy 718+ showed larger yield drop than 718 over the studied deformation conditions. The different yield behaviors were attributed to the various chemical compositions. The peak strain for both alloys increased in temperature range of 1223 K to 1273 K (950 to 1000 °C) and strain rates of 0.01 to 1 s−1. This uncommon behavior was ascribed to the change in the mechanism of microstructural evolution from continuous to discontinuous dynamic recrystallization (DRX). The kinetics of DRX was described by the Avrami equation and the exponent was determined at different deformation conditions. The Avrami exponent increased in the middle values of Zener–Hollomon (Z) parameters, i.e., 29.3 < lnZ < 32.9 for 718 and 31.4 < lnZ < 34.5 for 718+. The unusual variation of the Avrami exponent was attributed to the change in the mechanism of DRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.Y. Zhang, S.H. Zhang, M. Cheng, Z.X. Li: Mater. Characterization, 2010, vol. 61, pp. 49-53.

    Article  Google Scholar 

  2. C.N. Wei, H.Y. Bor, C.Y. Ma, T.S. Lee: Mater. Chem. Phys., 2003, vol. 80, 89–93.

    Article  Google Scholar 

  3. R.L. Kennedy: Allvac® 718plus™ Superalloy For The Next Forty Years, Superalloys 718, 625, 706 and Derivatives, Edited by E.A. Loria, TMS (The Minerals, Metals & Materials Society), 2005, pp. 1–14.

  4. O.A. Ojo, M.C. Chaturvedi: Mater. Sci. Eng.. 2007, vol. A454–455, pp. 389–97.

    Google Scholar 

  5. J.H. Du, X.D. Lu, Q. Deng, J.L. Qu, J.Y. Zhuang, Z.Y. Zhong: Mater. Sci. Eng., 2007, vol. A452-453, pp. 584-91.

    Article  Google Scholar 

  6. S. Antonov, M. Detrois, R.C. Helmink, S. Tin: J. Alloys Comp., 2015, vol. 626, pp. 76-86.

    Article  Google Scholar 

  7. E.J. Pickering, H. Mathur, A. Bhowmik, O.M.D.M. Messé, J.S. Barnard, M.C. Hardy, R. Krakow, K. Loehnert, H.J. Stone, C.M.F. Rae: Acta Mater., 2012, vol. 60, pp. 2757-69.

    Article  Google Scholar 

  8. O.M. Messé, J.S. Barnard, E.J. Pickering, P.A. Midgley, C.M.F. Rae: Phil. Mag., 2014, vol. 94, pp. 1132-52.

    Article  Google Scholar 

  9. B. Verlinden, J. Driver, I. Smajdar, R. Doherty: Thermomechanical processing of metallic materials, Elsevier Science, London, 2007.

    Google Scholar 

  10. Handbook of Aluminum: in Alloy Production and Materials Manufacturing, vol. 2, G.E. Totten and D. Scott MacKenzie, eds., Tylor and Francis Co., New York, 2005.

  11. [11] C. Ouchi, T. Okita: Trans. ISIJ, 1983, vol. 23, pp. 128-36.

    Article  Google Scholar 

  12. X. Yang, H. Miura, T. Sakai: Mater. Trans., 2002, vol. 43, pp. 2400-07.

    Article  Google Scholar 

  13. Y.C. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, L.-T. Li: J. Alloys Comp., 2015, vol. 640, pp. 101-13.

    Article  Google Scholar 

  14. G.R. Ebrahimi, H. Keshmiri, A. Momeni, A. Mazinani: Mater. Sci. Eng., 2011, vol. A528, 7488-93.

    Article  Google Scholar 

  15. M. Yazdani, S.M. Abbasi, A. Karimi Taheri, A. Momeni: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 3271-9.

    Article  Google Scholar 

  16. H. Dehghan, S.M. Abbasi, A. Momeni, A. Karimi Taheri: J. Alloys Comp., 2013, vol. 564, pp. 13-19.

    Article  Google Scholar 

  17. N. Srinivasan, Y.V.R.K. Prasad: Mater. Sci. Technol., 1992, vol. 8, pp. 206-12.

    Article  Google Scholar 

  18. G.R. Ebrahimi, A. Momeni, S.M. Abbasi, H. Monajatizadeh: Met. Mater. Int., 2013, vol. 19, pp. 11-7.

    Article  Google Scholar 

  19. P. Poelt, C. Sommitsch, S. Mitsche, M. Walter: Mater. Sci. Eng., 2006, vol. A420, 306-14.

    Article  Google Scholar 

  20. S.M. Abbasi, A. Momeni: Mater. Sci. Eng., 2012, vol. A552, pp. 330-35.

    Article  Google Scholar 

  21. [21] A. Momeni, S.M. Abbasi, M. Morakabati, H. Badri, X. Wang: Mater. Sci. Eng., 2014, vol. A615, pp. 51–60.

    Article  Google Scholar 

  22. H. Yuan, W.C. Liu: Mater. Sci. Eng., 2005, vol. 408, pp. 281–89.

    Article  Google Scholar 

  23. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, X.M. Zhang: Mater. Sci. Eng., 2008, vol. 497, pp. 479–86.

    Article  Google Scholar 

  24. Y. Wang, L. Zhen, W.Z. Shao, L. Yang, X.M. Zhang: J. Alloys Comp., 2009, vol. 474, pp. 341–6.

    Article  Google Scholar 

  25. Y. Wang, W.Z. Shao, L. Zhen, X.M. Zhang: Mater. Sci. Eng., 2008, vol. 486, pp. 321–32.

    Article  Google Scholar 

  26. Y. Wang, W.Z. Shao, L. Zhen, C. Yang, X.M. Zhang: J. Alloys Comp., 2009, vol. 471, pp. 331–5.

    Article  Google Scholar 

  27. M.J. Donachie, S.J. Donachie: Superalloys, a technical guide, ASM International, Materials Park, Ohio, 2002.

    Google Scholar 

  28. A. Momeni, S.M. Abbasi, M. Morakabati, A. Akhondzadeh: Mater. Sci. Eng., 2008, vol. 643, pp. 142-8.

    Article  Google Scholar 

  29. X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai, F. Yoshida: Mater. Trans. 2009, vol. 50, pp. 1576–8.

    Article  Google Scholar 

  30. I. Philippart, H.J. Rack: Mater. Sci. Eng., 1998, vol. A243, pp. 196–200.

    Article  Google Scholar 

  31. X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai, F. Yoshida: Mater. Trans., 2009, vol. 50, pp. 1576-8.

    Article  Google Scholar 

  32. Z.L. Zhao, Y.Q. Ning, H.Z. Guo, Z.K. Yao, M.W. Fu: Mater. Sci. Eng., 2015, vol. A620, pp. 383-9.

    Article  Google Scholar 

  33. [33] W. Qiong, L. Shu-Suo, M. Yue, G. Sheng-Kai, Chin. Phys., 2012, vol. 21B, pp. 1-7.

    Google Scholar 

  34. B. Million, J. Ruzickova, J. Velisek, J. Vrestal: Mater. Sci. Eng. 1981, vol. 50, pp. 43-52.

    Article  Google Scholar 

  35. X. Zhang, H. Deng, S. Xiao, Z. Zhang, J. Tang, L. Deng, W. Hu: J. Alloys Comp., 2014, vol. 588, pp. 163–9.

    Article  Google Scholar 

  36. D. Connetable, B. Ter-Ovanessian, E. Andrieu: J. Phys. Condensed Matter, 2012, vol. 24, pp. 1-5.

    Article  Google Scholar 

  37. X.J. Liu, H.H. Hu, J.J. Han, Y. Lu, C.P. Wang: CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, vol. 38, pp. 140–5.

    Article  Google Scholar 

  38. P.C.J. Gallagher: Met. Trans., 1970, vol. 1, pp. 2429–61.

    Google Scholar 

  39. R.J. Wasilewski: Scripta Metall., 1967, vol. 1, pp. 45-7.

    Article  Google Scholar 

  40. F.J. Humphreys, M. Hatherly: Recrystallization and related annealing phenomena, 1st Ed., Elsevier, Oxford, 1995, pp. 23.

    Google Scholar 

  41. C.L. Zacherl, S.L. Shang, D.E. Kim, Y. Wang, Z.K. Liu: 12th Symposium on Superalloys, E.C. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Tellesman, eds., TMS, 2012, pp. 455–61.

  42. S.P. Coryel: M. Sc. thesis, Colorado School of Mines, 2010.

  43. H.Y. Wu, P.H. Sun, F.J. Zhu, J.H. Liao, S.C. Wang, W.R. Wang, C.C. Wang, C.H. Chiu: Appl. Mech. Mater. 2012, vol. 117-119, 1018-21.

    Google Scholar 

  44. Flow behavior of three 625 type alloys during high temperature deformation, Superalloys 718, 625, 706 and various derivatives, E.A. Loria, ed., The Minerals, Metals & Materials Society, 1994, pp. 315–29.

  45. F. Mohammadi Shore, M. Morakabati, S.M. Abbasi, A. Momeni: J. Mater. Sci. Eng. Perform., 2014, vol. 23, pp. 1424-1433.

    Article  Google Scholar 

  46. S. Guo, D. Li, H. Pen, Q. Guo, J. Hu: J. Nuclear Mater., 2011, vol. 410, pp. 52–8.

    Article  Google Scholar 

  47. F. Mohammadi Shore, M. Morakabati, S.M. Abbasi, A. Momeni, R. Mahdavi: ISIJ Int., 2014, vol. 54, pp. 1353–60.

    Article  Google Scholar 

  48. S. Mitsche, C. Sommitch, D. Huber, M. Stockinder, P. Poelt: Mater. Sci. Eng., 2011, vol. A528, pp. 3754-60.

    Article  Google Scholar 

  49. E.I. Poliak and J.J. Jonas: Acta Materialia, 1996, vol. 44, pp. 127-36.

    Article  Google Scholar 

  50. S.H. Cho, Y.C. Yoo: J. Mater. Sci., 2001, vol. 36, 4267–72.

    Article  Google Scholar 

  51. Y.C. Lin, X.M. Chen: Mater. Design, 2011, vol. 32, pp. 1733-59.

    Article  Google Scholar 

  52. H. Peng, D. Li, Q. Guo, S. Guo, X. Xu, J. Hu: Rare Met. Mater. Eng., 2012, vol. 41, pp. 1317-22.

    Article  Google Scholar 

  53. B. Wang, S.-H. Zhang, M. Cheng, H.-W. Song: J. Mater. Eng. Perform., 2013, vol. 22, pp. 2382-8.

    Google Scholar 

  54. A. Momeni, K. Dehghani, G.R. Ebrahimi, Sh. Kazemi: Met. Mater. Trans., 2013, vol. 44A, pp. 5567-76.

    Article  Google Scholar 

  55. D. Cai, L. Xiong, W. Liu, G. Sun and M. Yao: Mater. Charact., 2007, vol. 58, 941-6.

    Article  Google Scholar 

  56. S.H. Cho, Y.C. Yoo: J. Mater. Sci., 2001, vol. 36, pp. 4279–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Momeni.

Additional information

Manuscript submitted July 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, A., Abbasi, S.M., Morakabati, M. et al. A Comparative Study on the Hot Working Behavior of Inconel 718 and ALLVAC 718 Plus. Metall Mater Trans A 48, 1216–1229 (2017). https://doi.org/10.1007/s11661-016-3904-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3904-x

Keywords

Navigation