Skip to main content
Log in

An In Situ Study of Sintering Behavior and Phase Transformation Kinetics in NiTi Using Neutron Diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The powder sintering behavior of NiTi from an elemental powder mixture of Ni/Ti has been investigated, using an in situ neutron diffraction technique. In the sintered alloys, the overall porosity ranges from 9.2 to 15.6 pct, while the open-to-overall porosity ratio is between 8.3 and 63.7 pct and largely depends on the sintering temperature. In comparison to powder compacts sintered at 1223 K and 1373 K (950 °C and 1100 °C), the powder compact sintered at 1153 K (880 °C) shows a much smaller pore size, a higher open-to-overall porosity ratio but smaller shrinkage and a lower density. Direct evidence of eutectoid transformation in the binary Ni-Ti system during furnace cooling to ca. 890 K (617 °C) is provided by in situ neutron diffraction. The intensities of the B2-NiTi reflections decrease during the holding stage at 1373 K (1100 °C), which has been elaborated as an extinction effect according to the dynamical theory of neutron diffraction, when distorted crystallites gradually recover to perfect crystals. The analysis on the first five reflections clarifies the non-existence of any order–disorder transition in the NiTi phase from B2-to-BCC structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yamauchi K, Ohkata I, Tsuchiya K, Miyazaki S. Shape memory and superelastic alloys: technologies and applications. Cambridge, U.K.: Woodhead Publishing, 2011.

    Book  Google Scholar 

  2. Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. Progress in materials science 2012;57:911–46.

    Article  Google Scholar 

  3. Cluff D, Corbin SF. Intermetallics 2010;18:1480–90.

    Article  Google Scholar 

  4. Yen F-C, Hwang K-S. Metallurgical and Materials Transactions A 2012;43:687–96.

    Article  Google Scholar 

  5. Zhu SL, Yang XJ, Fu DH, Zhang LY, Li CY, Cui ZD. Materials Science and Engineering: A 2005;408:264–68.

    Article  Google Scholar 

  6. Chen G, Cao P, Edmonds N. Materials Science and Engineering: A 2013;582:117–25.

    Article  Google Scholar 

  7. Majima K, Sohama Y. Journal of the Japan Society of Powder and Powder Metallurgy 1982;29:127–32.

    Article  Google Scholar 

  8. Igharo M, Wood JV. Powder Metallurgy 1985;28:131–39.

    Article  Google Scholar 

  9. Kuroki H, Nishio M, Matsumoto C. Journal of the Japan Society of Powder and Powder Metallurgy 1989;36:701–06.

    Article  Google Scholar 

  10. Panigrahi BB, Godkhindi MM. Intermetallics 2006;14:130–35.

    Article  Google Scholar 

  11. Li B-Y, Rong L-J, Li Y-Y. Materials Science and Engineering: A 2000;281:169–75.

    Article  Google Scholar 

  12. Tang CY, Zhang LN, Wong CT, Chan KC, Yue TM. Materials Science and Engineering: A 2011;528:6006–11.

    Article  Google Scholar 

  13. Whitney M, Corbin SF, Gorbet RB. Intermetallics 2009;17:894–906.

    Article  Google Scholar 

  14. Li B-Y, Rong L-J, Li Y-Y. Intermetallics 2000;8:643–46.

    Article  Google Scholar 

  15. Chen G, Wen GA, Cao P, Edmonds N, Li YM. Powder Injection Moulding International 2012;6:83–88.

    Google Scholar 

  16. Chen G, Cao P. Metallurgical and Materials Transactions A 2013;44:5630–33.

    Article  Google Scholar 

  17. Chen G, Liss K-D, Cao P. Acta Materialia 2014;67:32–44

    Article  Google Scholar 

  18. G. Chen, K.-D. Liss, and P. Cao: TMS 2014 Supplemental Proceedings. Wiley, Hoboken, 2014, p. 967–73

  19. G. Chen: Ph.D. Thesis, Department of Chemical and Materials Engineering, The University of Auckland, New Zealand, 2014

  20. Chen G, Liss K-D, Cao P. Metals 2015;5:530–46.

    Article  Google Scholar 

  21. Zhang N, Babayan Khosrovabadi P, Lindenhovius JH, Kolster BH. Materials Science and Engineering: A 1992;150:263–70.

    Article  Google Scholar 

  22. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L. Binary alloy phase diagrams. Materials Park, OH: ASM International, 1990.

    Google Scholar 

  23. Whitney M, Corbin SF, Gorbet RB. Acta Materialia 2008;56:559–70.

    Article  Google Scholar 

  24. German R, Suri P, Park S. Journal of Materials Science 2009;44:1–39.

    Article  Google Scholar 

  25. Honma T, Matsumoto M, Shugo Y, Nishida M. Research report of the laboratory of nuclear science. vol. 12. Berlin: Tohoku University, 1979. p.183.

    Google Scholar 

  26. Otsuka K, Ren X. Progress in Materials Science 2005;50:511–618.

    Article  Google Scholar 

  27. Zhang J, Fan G, Zhou Y, Ding X, Otsuka K, Nakamura K, Sun J, Ren X. Acta Materialia 2007;55:2897–905.

    Article  Google Scholar 

  28. K.-D. Liß: Ph.D. Thesis, RWTH Aachen, 1994

  29. Kabra S, Yan K, Carr DG, Harrison RP, Dippenaar RJ, Reid M, Liss K-D. J. Appl. Phys. 2013;113:063513–18

    Article  Google Scholar 

  30. Darwin CG. Philosophical Magazine 1914;27A:315–33.

    Article  Google Scholar 

  31. Darwin CG. Philosophical Magazine 1922;43:800–29.

    Article  Google Scholar 

  32. Blackman M. Proceedings of the Royal Society 1939;173:68–82.

    Article  Google Scholar 

  33. Ewald P. Acta Crystallographica Section A 1969;25:103–08.

    Article  Google Scholar 

  34. A. Authier: in International Tables for Crystallography Volume B: Reciprocal Space, U. Shmueli, ed., Springer, Heidelberg, 2001, vol. B, p. 534–51.

  35. Studer AJ, Hagen ME, Noakes TJ. Physica B: Condensed Matter 2006;385–386, Part 2:1013–15.

    Article  Google Scholar 

  36. Rietveld H. Journal of Applied Crystallography 1969;2:65–71.

    Article  Google Scholar 

  37. Honjo G, Kitamura N. Acta Crystallographica 1957;10:533–34.

    Article  Google Scholar 

  38. Cooper MJ, Rouse KD. Acta Crystallographica Section A 1970;26:214–23.

    Article  Google Scholar 

  39. V.F. Sears: in International Tables for Crystallography, E. Prince, ed., International Union of Crystallography, Chester, 2006. p. 444.

  40. R.W. Waschowski: Landolt-Börnstein, H. Schopper, ed., Springer, Berlin, 2000.

  41. Zhao X, Liu Y, Wang Y, Feng P, Tang H. Metallurgical and Materials Transactions A 2014;45A:3446–53.

    Article  Google Scholar 

  42. Duwez P, Taylor JL. Trans. AIME 1950;188:1173–76.

    Google Scholar 

  43. D.M. Poole and W. Hume-Rothery: J. Inst. Met., 1954–1955, vol. 83, p. 473–80.

  44. Gupta SP, Mukherjee K, Johnson AA. Mater. Sci. Eng. 1973;11:283–97.

    Article  Google Scholar 

  45. Liss K-D, Bartels A, Schreyer A, Clemens H. Textures and Microstructures 2003;35:219–52.

    Article  Google Scholar 

  46. Yan K, Carr DG, Kabra S, Reid M, Studer A, Harrison RP, Dippenaar R, Liss K-D. World Journal of Engineering 2010;7:422–23.

    Google Scholar 

  47. Yan K, Carr GD, Kabra S, Reid M, Studer A, Harrison RP, Dippenaar R, Liss K-D. Advanced Engineering Materials 2011;13: 882–86.

    Article  Google Scholar 

  48. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science, Springer, New York, 2009.

    Book  Google Scholar 

  49. Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G. Acta Materialia 2010;58:1850–60.

    Article  Google Scholar 

  50. Chumlyakov Y, Surikova NS, Korotaev AD. Physics of metals and metallography 1996;82:102–09.

    Google Scholar 

  51. Aydoğmuş T, Bor Ş. Metallurgical and Materials Transactions A 2012;43:5173–81.

    Google Scholar 

  52. Bastin G, Rieck G. Metallurgical and Materials Transactions B 1974;5:1827–31.

    Article  Google Scholar 

  53. German RM. Powder Metallurgy Science. Princeton: Metal Powder Industries Federation, 1998.

    Google Scholar 

  54. Taupin D. Bulletin De La Societe Francaise Mineralogie Et De Cristallographie 1964;87:469–511.

    Google Scholar 

  55. Takagi S. Journal of the Physical Society of Japan 1969;26:1239–53.

    Article  Google Scholar 

  56. H. Rauch and D. Petrascheck: in Neutron Diffraction, H. Dachs, ed., Springer-Verlag, Berlin, 1978.

Download references

Acknowledgments

We thank the financial support from Ministry of Business Innovation and Employment (MBIE), New Zealand. Gang Chen acknowledges the China Scholarship Council (CSC) for providing his doctoral scholarship. We also appreciate the support of the Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO) and Australian Institute of Nuclear Science and Engineering (AINSE) Ltd for providing the beamtime and financial assistance (Award No.: P2716) for the neutron diffraction work conducted on the WOMBAT instrument. We also appreciate the funding from Shaanxi Science and Technology Co-ordination and Innovation Project (No.: 2014KTZB01-02-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao.

Additional information

Manuscript submitted January 22, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Liss, KD. & Cao, P. An In Situ Study of Sintering Behavior and Phase Transformation Kinetics in NiTi Using Neutron Diffraction. Metall Mater Trans A 46, 5887–5899 (2015). https://doi.org/10.1007/s11661-015-3156-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3156-1

Keywords

Navigation