Skip to main content
Log in

Microstructural Evolutions During Thermal Aging of Alloy 625: Impact of Temperature and Forming Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolutions occurring upon thermal aging of alloy 625 sheets were studied in the 823 K to 1173 K (550 °C to 900 °C) temperature range and for durations up to 2000 hours. TTT diagrams of the δ and γ″ phases were established based on high-resolution scanning electron microscopy and associated quantitative image analysis approaches. The evolutions of secondary carbide volume fraction were also characterized. It was observed that the precipitation domains of the γ″ and δ phases are, respectively, 823 K to 1023 K (550 °C to 750 °C) and 923 K to 1173 K (650 °C to 900 °C) and that the γ″ coarsening follows the LSW theory once these particles have an ellipsoidal morphology. The onset of grain growth, accompanied with an increase of the texture index, was observed at a temperature as low as 1173 K (900 °C). It results from the progressive dissolution of grain boundaries’ secondary carbides (especially M6C carbides) at this temperature, a process that favors a greater mobility of grain boundaries. It is also shown that the forming process (shear spinning), even after a relaxation heat treatment, enhances and stabilizes the precipitation of the δ phase compared to as-rolled + solution heat-treated sheets. It hence slows down the precipitation of the γ″ phase, a result that is in good agreement with a thermal aging that was performed under load (i.e., during a creep test).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Cortial, J.M. Corrieu, and C. Vernot-Loier: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1273-86.

    Article  Google Scholar 

  2. S. Floreen, G.E. Fuchs, and W.J. Yang: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1994, pp. 13–37.

  3. H.L. Eiselstein and D.J. Tillack: Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1991, pp. 1–14.

  4. L.E. Shoemaker: Superalloys 718, 625, 706 and Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 2005, pp. 409–18.

  5. C. Vernot-Loier and F. Cortial: Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1991, pp. 409–22.

  6. J.M. Rakowski, C.P. Stinner, M. Lipschutz, and J.P. Montague: Superalloys 718, 625, 706 and Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 2005, pp. 271–86.

  7. V. Shankar, K. Bhanu Sankara Rao, and S.L. Mannan: J. Nucl. Mater., 2001, vol. 288, pp. 222–32.

  8. M. Sundararaman, L. Kumar, G. Eswara Prasad, P. Mukhopadhyay, and S. Banerjee: Metall. Mat. Trans. A, 1999, vol. 30A, pp. 41–52.

  9. C. Thomas, and P. Tait: Int. J. Press. Vessels Piping, 1994, vol. 59, pp. 41-49.

    Article  Google Scholar 

  10. V. Shankar, M. Valsan, K. Bhanu Sankara Rao, and S.L. Mannan: Scripta Mater., 2001, vol. 44, pp. 2703–711.

  11. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 2001, pp. 367–78.

  12. L. Ferrer, B. Pieraggi, and J.F. Uginet: in Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1991, pp. 217–28.

  13. M. Köhler: Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1991, pp. 363–74.

  14. H.C. Pai and M. Sundararaman: Superalloys 718, 625, 706 and Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 2005, pp. 487–95.

  15. J.F. Radavich and A. Fort: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1994, pp. 635–47.

  16. M. Sundararaman, R. Kishore, and P. Mukhopadhyay: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1994, pp. 405–17.

  17. C.R. Conder, G.D. Smith, and J.F. Radavich: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, USA, 1997, pp. 447–58.

  18. N.D. Evans, P.J. Maziasz, J.P. Shingledecker, and Y. Yamamoto: Mater. Sci. Eng. A, 2008, vol. 498, pp. 412-20.

    Article  Google Scholar 

  19. U. Heubner and M. Köhler: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1994, pp. 479–88.

  20. M. Köhler and U. Heubner: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1997, pp. 795–803.

  21. G.D. Smith, D.J. Tillack, and S.J. Patel: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 2001, pp. 35–46.

  22. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1997, pp. 367–78.

  23. G.F. Vander Voort, J.W. Bowman, and R.B. Frank: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1994, pp. 489–98.

  24. L. Mataveli Suave: M.Sc. Dissertation, ISAE-ENSMA, 2012.

  25. G.D. Smith and D.H. Yates: Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 1991, pp. 509–17.

  26. G. Bai, J. Li, R. Hu, T. Zhang, H. Kou, and H. Fu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2339-44.

    Article  Google Scholar 

  27. J. Cormier, X. Milhet, and J. Mendez: J. Mater. Sci., 2007, vol. 42, pp. 7780-86.

    Article  Google Scholar 

  28. J.R. Vaunois, J. Cormier, P. Villechaise, A. Devaux, and B. Flageolet: The Ith International Symposium on Superalloy 718 and Derivatives, E.A. Ott, J.R. Groh, A. Banik, I. Dempster, T.P. Gabb, R. Helmink, X. Liu, A. Mitchell, G. Sjöberg, and A. Wusatowska-Sarnek, eds., TMS, Pittsburgh, PA, 2010, pp. 199–213.

  29. I.M. Lifshitz, and V.V. Slyozov: J. Phys. Chem. Sol., 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  30. C. Wagner: Zeit. Elektro., 1961, vol. 65, pp. 581-91.

    Google Scholar 

  31. A. Devaux, L. Naze, R. Molins, A. Pineau, A. Organista, J.Y. Guedou, J.F. Uginet, and P. Heritier: Mater. Sci. Eng. A, 2008, vol. 486, pp. 117-22.

    Article  Google Scholar 

  32. A. Niang: Ph.D. Dissertation, Université de Toulouse, 2010.

  33. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall. Trans. A, 1988, vol. 19A, pp. 454-65.

    Google Scholar 

  34. S. Azadian, L.Y. Wei, and R. Warren: Mater. Charact., 2004, vol. 53, pp. 7-16.

    Article  Google Scholar 

  35. A. Devaux: Ph.D. Dissertation, Ecole Nationale Supérieure des Mines de Paris, 2007.

  36. A. Niang, B. Viguier, and J. Lacaze: Mater. Charact., 2010, vol. 61, pp. 525-34.

    Article  Google Scholar 

  37. Y. Huang, and T.G. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 421-27.

    Article  Google Scholar 

  38. E. Schnabel, H.J. Schüller, and P. Schwaab: Prakt. Metall., 1971, vol. 8, pp. 521-27.

    Google Scholar 

  39. J.R. Crum, M.E. Adkins, and W.G. Lipscomb: The National Association of Corrosion Engineers, Paper No. 208, Houston, Texas, 1986.

  40. R. Hu, G. Bai, J. Li, J. Zhang, T. Zhang, and H. Fu: Mater. Sci. Eng. A, 2012, vol. 548, pp. 83-88.

    Article  Google Scholar 

  41. M. Clavel, D. Fournier, and A. Pineau: Metall. Trans. A, 1975, vol. 6A, pp. 2305-07.

    Google Scholar 

  42. F. Taina, M. Pasqualon, V. Velay, D. Delagnes, and P. Lours: in the 7th International Symposium on Superalloy 718 and Derivatives, E.A. Ott, J.R. Groh, A. Banik, I. Dempster, T.P. Gabb, R. Helmink, X. Liu, A. Mitchell, G. Sjöberg, and A. Wusatowska-Sarnek, eds., TMS, Pittsburgh, PA, 2010, pp. 893–905.

  43. Ö. Özgün, H. Özkan Gülsoy, R. Yilmaz, and F. Findik: J. Alloys Compd., 2013, vol. 546, pp. 192–207.

  44. Y.F. Han, P. Deb, and M.C. Chaturvedi: Met. Sci., 1982, vol. 16, pp. 555–62.

    Article  Google Scholar 

  45. C. Slama, C. Servant, and G. Cizeron: J. Mater. Res., 1997, vol. 12, pp. 2298-316.

    Article  Google Scholar 

  46. G.D. Smith and S.J. Patel: Superalloys 718, 625, 706 and Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 2005, pp. 135–54.

  47. M.G. Burke, W.J. Mills, and R. Bajaj: Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Pittsburgh, PA, 2001, pp. 389–98.

  48. T. Krol, D. Baither, and E. Nembach: Acta Mater., 2004, vol. 52, pp. 2095-108.

    Article  Google Scholar 

  49. S. Xu, J.I. Dickson, and A.K. Koul: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2687-95.

    Article  Google Scholar 

Download references

Acknowledgments

The SAFRAN group (Aircelle, Snecma, and Turbomeca companies) is gratefully acknowledged for financial support, for providing the material, and for L. Mataveli Suave Master thesis grant. One of the two anonymous reviewers is gratefully acknowledged for all his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Cormier.

Additional information

Manuscript submitted May 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suave, L.M., Cormier, J., Villechaise, P. et al. Microstructural Evolutions During Thermal Aging of Alloy 625: Impact of Temperature and Forming Process. Metall Mater Trans A 45, 2963–2982 (2014). https://doi.org/10.1007/s11661-014-2256-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2256-7

Keywords

Navigation