Skip to main content
Log in

Nanoindentation as a strength probe—a study on the hardness dependence of indent size for fine-grained and coarse-grained ferritic steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A nanoindentation hardness testing system, including an atomic-force microscope (AFM)-based nanoindentation tester and a calibration method using electrolytically polished single-crystal metals as references, was proposed. This was applied to a study of the mechanical properties of fine-grained ferritic steel (grain size of 1.2 µm) and coarse-grained ferritic steel (30 µm). An empirical function giving the macroscopic hardness for all four reference metals from the nanoindentation force curves was established. The converted Vickers hardness (HV*) of the coarse-grained steel is almost independent of the indent size. The fine-grained steel shows only HV* 130 with an indent of only 100 nm, compared with a macroscopic hardness of HV 210. The difference, HV 80, is considered to reflect the amount of grain-boundary strengthening. The critical indent size for the hardness transition seems to be around 1 µm, comparable to the grain size of the specimen. This result supports the explanation of grainboundary strengthening. It is also consistent with Pickering’s work on low-carbon steel, as the estimated locking parameter (k of 2.6×105 N/m3/2) in the Hall-Petch relationship is in good agreement with his value of 2.4×105 N/m3/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Nix: Mater. Sci. Eng., 1997, vols. A234–A36, pp. 37–44.

    Google Scholar 

  2. W.B. Morrison: Trans. ASM, 1966, vol. 59, pp. 825–46.

    Google Scholar 

  3. A. Sato: Bull. Iron Steel Inst. Jpn., 1998, vol. 3, pp. 88–89; see also Ultra-Steels Research Project home page at http://www.nrim.go.jp:8080/frontier/ext/frcsm/.

    Google Scholar 

  4. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.

    CAS  Google Scholar 

  5. K.W. McElhaney, J.J. Vlassak, and W.D. Nix: J. Mater. Res., 1998, vol. 13, pp. 1300–06

    CAS  Google Scholar 

  6. J.S. Field and M.V. Swain: J. Mater. Res., 1993, vol. 8, pp. 297–306

    CAS  Google Scholar 

  7. M. Atkinson: J. Mater. Sci., 1998, vol. 33, pp. 2937–47.

    Article  CAS  Google Scholar 

  8. D. Tabor: The Hardness of Metals, Clarendon Press, Oxford, United Kingdom, 1951, pp. 112 and 166.

    Google Scholar 

  9. S. Nishijima, A. Ishii, K. Kanazawa, S. Matsuoka, and C. Masuda: Fundamental Fatigue Properties of JIS Steels for Machine Structural Use, National Research Institute for Metals, Ibaraki, 1989, p. 77.

    Google Scholar 

  10. G. Farges and D. Degout: Thin Solid Films, 1989, vol. 181, pp. 365–74.

    Article  Google Scholar 

  11. S.J. Bull, T.F. Page, and E.H. Yoffe: Phil. Mag. Lett., 1989, vol. 59, pp. 281–88.

    CAS  Google Scholar 

  12. S.V. Hainsworth, H.W. Chandler, and T.F. Page: J. Mater. Res., 1996, vol. 11, pp. 1987–95

    CAS  Google Scholar 

  13. T. Hayashi, S. Torizuka, T. Mitsui, K. Tsuzaki, and K. Nagai: CAMP-ISIJ, 1999, vol. 12, pp. 385–88.

    Google Scholar 

  14. K. Miyahara, S. Matsuoka, N. Nagashima, and S. Mishima: Trans. Jpn. Soc. Mech. Eng. A, 1995, vol. 61, pp. 2321–28.

    Google Scholar 

  15. K. Miyahara, N. Nagashima, T. Ohmura, and S. Matsuoka: Nanostruc. Mater., 1999, vol. 12, pp. 1049–52.

    Article  Google Scholar 

  16. T. Sawa and K. Tanaka: Nagaoka University of Technology, Nagaoka, unpublished work, 2000.

  17. K. Miyahara, N. Nagashima, S. Matsuoka, and T. Ohmura: Trans. Jpn. Soc. Mech. Eng. A, 1998, vol. 64, pp. 2567–73

    CAS  Google Scholar 

  18. ASTM Designation E112-88, ASTM, Philadelphia, PA, 1988.

  19. K. Miyahara, S. Matsuoka, and N. Nagashima: JSME Int. J., 1998, vol. 41A, pp. 562–68.

    Google Scholar 

  20. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd, London, 1978, p. 7.

    Google Scholar 

  21. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd, London, 1978, p. 63.

    Google Scholar 

  22. S. Miyazaki, K. Shibata, and H. Fujita: Acta Metall., 1978, vol. 27, pp. 855–62.

    Google Scholar 

  23. J.E. Bailey and P.B. Hirsch: Phil. Mag., 1960, vol. 5, pp. 485–97.

    CAS  Google Scholar 

  24. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  25. T. Narutani and T. Takamura: Acta Metall. Mater., 1991, vol. 39, pp. 2037–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyahara, K., Matsuoka, S. & Hayashi, T. Nanoindentation as a strength probe—a study on the hardness dependence of indent size for fine-grained and coarse-grained ferritic steel. Metall Mater Trans A 32, 761–768 (2001). https://doi.org/10.1007/s11661-001-0091-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0091-0

Keywords

Navigation