Skip to main content

Advertisement

Log in

Effects of age and sex on osteocalcin and bone-specific alkaline phosphatase—reference intervals and confounders for two bone formation markers

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Bone formation markers bone-specific alkaline phosphatase and osteocalcin are used in many clinical situations. Therefore, we calculated reference intervals for the two markers and investigated how they are influenced by several factors including sex and age. Furthermore, we established clinically relevant reference intervals for the two markers.

Objective

The bone turnover markers (BTMs), bone-specific alkaline phosphatase (bone ALP), and osteocalcin (OC), are frequently measured formation markers. The purpose of this study was to establish reference intervals (RIs) for the two BTMs in a general adult Danish population.

Methods

Bone ALP and OC were measured on the iSYS (IDS Plc) automatic analyzer in samples from the Danish Health2006 5-year follow-up study on serum from 2308 participants (54% women, age range 24–76). Participants with self-reported diagnosis of osteoporosis or receiving hormonal replacement were excluded from analyses while participants on hormonal contraceptives were included.

Results

The geometric mean and 95%RI for bone ALP were 13.9 μg/L (7.6–25.6) for men and 13.8 μg/L (7.0–27.4) for women, while for OC 16.0 μg/L (7.5–34.4) for men and 18.6 μg/L (8.1–42.9) for women. Levels of bone ALP increased with increasing age (β 1.004, p < 0.001), while female sex had no effect. OC levels decreased with increasing age (β 0.998, p = 0.009) and increased with female sex (β 1.104, p < 0.001). Based on our findings, we propose for bone ALP and OC three clinical RIs for men based on age and three clinical RI for women based on age and menopausal status.

Conclusion

The RI for bone ALP and OC varies with age and sex and the BTMs are influenced differently by the two factors. Consequently, the need for establishing valid RIs is of great importance before the full potential of BTM can be used in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Svedbom A, Ivergård M, Hernlund E, Rizzoli R, Kanis JA (2014) Epidemiology and economic burden of osteoporosis in Switzerland. Arch Osteoporos 9:187. https://doi.org/10.1007/s11657-014-0187-y

    Article  CAS  PubMed  Google Scholar 

  2. Cummings S, MElton L (2002) Epidemiology and consequences of osteoporotic fractures. Lancet 359:1761–1767. https://doi.org/10.1016/b978-012098655-2/50031-4

    Article  PubMed  Google Scholar 

  3. Darba J, Kaskens L, Perez-Alvarez N et al (2015) Disability-adjusted-life-years losses in postmenopausal women with osteoporosis: a burden of illness study. BMC Public Health 15:324. https://doi.org/10.1186/s12889-015-1684-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Center J, Nguyen T, Schneider D et al (2010) Mortality after all major types of osteoporotic fracture in men and women : an observational study. Lancet 353:878–882

    Article  Google Scholar 

  5. Naylor K, Eastell R (2012) Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol 8:379–389. https://doi.org/10.1038/nrrheum.2012.86

    Article  CAS  PubMed  Google Scholar 

  6. Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA, IOF-IFCC Bone Marker Standards Working Group (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420. https://doi.org/10.1007/s00198-010-1501-1

    Article  CAS  PubMed  Google Scholar 

  7. Johansson H, Odén A, Kanis JA, McCloskey E, Morris HA, Cooper C, Vasikaran S, IFCC-IOF Joint Working Group on Standardisation of Biochemical Markers of Bone Turnover (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94:560–567. https://doi.org/10.1007/s00223-014-9842-y

    Article  CAS  PubMed  Google Scholar 

  8. Morris HA, Eastell R, Jorgensen NR et al (2017) Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta 467:34–41. https://doi.org/10.1016/j.cca.2016.06.036

    Article  CAS  PubMed  Google Scholar 

  9. Bauer DC, Black DM, Garnero P, Hochberg M, Ott S, Orloff J, Thompson DE, Ewing SK, Delmas PD, Fracture Intervention Trial Study Group (2004) Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J Bone Miner Res 19:1250–1258. https://doi.org/10.1359/JBMR.040512

    Article  PubMed  Google Scholar 

  10. Lim SM, Kim YN, Park KH, Kang B, Chon HJ, Kim C, Kim JH, Rha SY (2016) Bone alkaline phosphatase as a surrogate marker of bone metastasis in gastric cancer patients. BMC Cancer 16:1–7. https://doi.org/10.1186/s12885-016-2415-x

    Article  CAS  Google Scholar 

  11. Lang J, Zhao Q, He Y, Yu X (2018) Bone turnover markers and novel biomarkers in lung cancer bone metastases. Biomarkers 23:518–526. https://doi.org/10.1080/1354750X.2018.1463566

    Article  CAS  PubMed  Google Scholar 

  12. Rajeev P, Movseysan A, Baharani A (2017) Changes in bone turnover markers in primary hyperparathyroidism and response to surgery. Ann R Coll Surg Engl 99:559–562. https://doi.org/10.1308/rcsann.2017.0092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calvo MS, Eyre DR, Gundberg CM (1996) Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 17:333–368. https://doi.org/10.1210/er.17.4.333

    Article  CAS  PubMed  Google Scholar 

  14. Kanakis I, Nikolaou M, Pectasides D, Kiamouris C, Karamanos NK (2004) Determination and biological relevance of serum cross-linked type I collagen N-telopeptide and bone-specific alkaline phosphatase in breast metastatic cancer. J Pharm Biomed Anal 34:827–832. https://doi.org/10.1016/S0731-7085(03)00567-3

    Article  CAS  PubMed  Google Scholar 

  15. Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep 13:180–185. https://doi.org/10.1007/s11914-015-0267-y

    Article  PubMed  Google Scholar 

  16. Neve A, Corrado A, Cantatore FP (2013) Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 228:1149–1153. https://doi.org/10.1002/jcp.24278

    Article  CAS  PubMed  Google Scholar 

  17. Orimo H (2010) The mechanism of mineralization and the role of alkaline phosphatase in heath and disease. J Nippon Med Sch 77:4–12

    Article  CAS  Google Scholar 

  18. Li J, Zhang H, Yang C, Li Y, Dai Z (2016) An overview of osteocalcin progress. J Bone Miner Metab 34:367–379. https://doi.org/10.1007/s00774-015-0734-7

    Article  CAS  PubMed  Google Scholar 

  19. Ross PD, Kress BC, Parson RE, Wasnich RD, Armour KA, Mizrahi IA (2000) Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int 11:76–82. https://doi.org/10.1007/s001980050009

    Article  CAS  PubMed  Google Scholar 

  20. Vergnaud P, Garnero P, Meunier PJ, Bréart G, Kamihagi K, Delmas PD (1997) Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS study. J Clin Endocrinol Metab 82:719–724. https://doi.org/10.1210/jc.82.3.719

    Article  CAS  PubMed  Google Scholar 

  21. Szulc P, Chapuy MC, Meunier PJ, Delmas PD (1993) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 91:1769–1774. https://doi.org/10.1172/JCI116387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luukinen H, Käkönen SM, Pettersson K, Koski K, Laippala P, Lövgren T, Kivelä SL, Väänänen HK (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 15:2473–2478. https://doi.org/10.1359/jbmr.2000.15.12.2473

    Article  CAS  PubMed  Google Scholar 

  23. Horowitz GL (2010) Estimating reference intervals. Am J Clin Pathol 133:175–177. https://doi.org/10.1309/AJCPQ4N7BRZQVHAL

    Article  PubMed  Google Scholar 

  24. Thuesen BH, Cerqueira C, Aadahl M, Ebstrup JF, Toft U, Thyssen JP, Fenger RV, Hersoug LG, Elberling J, Pedersen O, Hansen T, Johansen JD, Jørgensen T, Linneberg A (2014) Cohort Profile: the Health2006 cohort, research centre for prevention and health. Int J Epidemiol 43:568–575. https://doi.org/10.1093/ije/dyt009

    Article  PubMed  Google Scholar 

  25. Fenger RV, Vidal C, Gonzalez-Quintela A et al (2014) The association of the “additional height index” with atopic diseases, non-atopic asthma, ischaemic heart disease and mortality: a population-based study. Int J Epidemiol 43:568–575. https://doi.org/10.3109/00365521.2015.1010571

    Article  CAS  PubMed  Google Scholar 

  26. Horwitz A, Skaaby T, Kårhus LL, Schwarz P, Jørgensen T, Rumessen JJ, Linneberg A (2015) Screening for celiac disease in Danish adults. Scand J Gastroenterol 50:824–831. https://doi.org/10.3109/00365521.2015.1010571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jørgensen NR, Møllehave LT, Hansen YBL, Quardon N, Lylloff L, Linneberg A (2017) Comparison of two automated assays of BTM (CTX and P1NP) and reference intervals in a Danish population. Osteoporos Int 28:2103–2113. https://doi.org/10.1007/s00198-017-4026-z

    Article  CAS  PubMed  Google Scholar 

  28. Rosengren A, Wilhelmsen L (1997) Physical activity protects against coronary death and deaths from all causes in middle-aged men: evidence from a 20-year follow-up of the primary prevention study in Goteborg. Ann Epidemiol 7:69–75. https://doi.org/10.1016/S1047-2797(96)00106-8

    Article  CAS  PubMed  Google Scholar 

  29. Saltin B, Grimby G (1968) Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation 38:1104–1115. https://doi.org/10.1161/01.CIR.38.6.1104

    Article  CAS  PubMed  Google Scholar 

  30. Solberg HE (1987) International Federation of Clinical Chemistry (IFCC), Scientific Committee, Clinical Section, Expert Panel on Theory of Reference Values, and International Committee for Standardization in Haematology (ICSH). Standing Committee on Reference Values Appro J Clin Chem Clin Biochem 25:337–342

    CAS  Google Scholar 

  31. Solberg HE (1987) International Federation of Clinical Chemistry, Scientific Committee, Clinical Section, Expert Panel on Theory of Reference Values, and International Committee for Standardization in Haematology. Standing Committee on Reference Values. Approved Recommenda. Clin Chim Acta 165:111–118

    CAS  Google Scholar 

  32. Chubb SAP, Byrnes E, Manning L, Golledge J, Ebeling PR, Flicker L, Yeap BB, Vasikaran SD (2017) Bone turnover markers: defining a therapeutic target. Clin Biochem 50:162–163. https://doi.org/10.1016/j.clinbiochem.2016.09.010

    Article  PubMed  Google Scholar 

  33. Michelsen J, Wallaschofski H, Friedrich N, Spielhagen C, Rettig R, Ittermann T, Nauck M, Hannemann A (2013) Reference intervals for serum concentrations of three bone turnover markers for men and women. Bone 57:399–404. https://doi.org/10.1016/j.bone.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  34. Morovat A, Catchpole A, Meurisse A, Carlisi A, Bekaert AC, Rousselle O, Paddon M, James T, Cavalier E (2013) IDS iSYS automated intact procollagen-1-Nterminus pro-peptide assay: method evaluation and reference intervals in adults and children. Clin Chem Lab Med 51:2009–2018. https://doi.org/10.1515/cclm-2012-0531

    Article  CAS  PubMed  Google Scholar 

  35. Li M, Li Y, Deng W et al (2014) Chinese bone turnover marker study: reference ranges for C-terminal telopeptide of type i collagen and procollagen I N-terminal peptide by age and gender. PLoS One 9:5–11. https://doi.org/10.1371/journal.pone.0103841

    Article  CAS  Google Scholar 

  36. Ardawi MSM, Maimani AA, Bahksh TA, Rouzi AA, Qari MH, Raddadi RM (2010) Reference intervals of biochemical bone turnover markers for Saudi Arabian women: a cross-sectional study. Bone 47:804–814. https://doi.org/10.1016/j.bone.2010.07.017

    Article  CAS  PubMed  Google Scholar 

  37. Gossiel F, Finigan J, Jacques R et al (2014) Establishing reference intervals for bone turnover markers in healthy postmenopausal women in a nonfasting state. Bonekey Rep 3:1–7. https://doi.org/10.1038/bonekey.2014.68

    Article  CAS  Google Scholar 

  38. Szulc P, Garnero P, Munoz F, Marchand F, Delmas PD (2001) Cross-sectional evaluation of bone metabolism in men. J Bone Miner Res 16:1642–1650. https://doi.org/10.1359/jbmr.2001.16.9.1642

    Article  CAS  PubMed  Google Scholar 

  39. Iki M, Akiba T, Matsumoto T, Nishino H, Kagamimori S, Kagawa Y, Yoneshima H, JPOS Study Group (2004) Reference database of biochemical markers of bone turnover for the Japanese female population. Japanese population-based osteoporosis (JPOS) study. Osteoporos Int 15:981–991. https://doi.org/10.1007/s00198-004-1634-1

    Article  CAS  PubMed  Google Scholar 

  40. Schafer AL, Vittinghoff E, Ramachandran R, Mahmoudi N, Bauer DC (2010) Laboratory reproducibility of biochemical markers of bone turnover in clinical practice. Osteoporos Int 21:439–445. https://doi.org/10.1007/s00198-009-0974-2

    Article  CAS  PubMed  Google Scholar 

  41. Cifuentes M, Johnson MA, Lewis RD, Heymsfield SB, Chowdhury HA, Modlesky CM, Shapses SA (2003) Bone turnover and body weight relationships differ in normal-weight compared with heavier postmenopausal women. Osteoporos Int 14:116–122. https://doi.org/10.1007/s00198-002-1324-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Terzi R, Dindar S, Terzi H, Demirtaş Ö (2015) Relationships among the metabolic syndrome, bone mineral density, bone turnover markers, and hyperglycemia. Metab Syndr Relat Disord 13:78–83. https://doi.org/10.1089/met.2014.0074

    Article  CAS  PubMed  Google Scholar 

  43. Benson BW, Shulman JD (2005) Inclusion of tobacco exposure as a predictive factor for decreased bone mineral content. Nicotine Tob Res 7:719–724. https://doi.org/10.1080/14622200500259119

    Article  CAS  PubMed  Google Scholar 

  44. Ward KD, Klesges RC (2001) A meta-analysis of the effects of cigarette smoking on mineral density. Calcif Tissue Int 68:259–270. https://doi.org/10.1007/s002230001188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gómez-Cabello A, Ara I, González-Agüero A et al (2012) Effects of training on bone mass in older adults: a systematic review. Sport Med 42:301–325. https://doi.org/10.2165/11597670-000000000-00000

    Article  Google Scholar 

  46. Howe T, Shea B, Lj D et al (2011) Exercise for preventing and treating osteoporosis in postmenopausal women ( review ) SUMMARY OF FINDINGS FOR THE MAIN COMPARISON. Education. https://doi.org/10.1002/14651858.CD000333.pub2.www.cochranelibrary.com

  47. Fenger RV, Gonzalez-Quintela A, Vidal C, Husemoen LL, Skaaby T, Thuesen BH, Aadahl M, Madsen F, Linneberg A (2014) The longitudinal relationship of changes of adiposity to changes in pulmonary function and risk of asthma in a general adult population. BMC Pulm Med 14:1–10. https://doi.org/10.1186/1471-2466-14-208

    Article  Google Scholar 

Download references

Disclaimer

The funding organizations(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Funding

This work was supported by Immunodiagnostic Systems, plc, Tyne and Wear, UK.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted responsibility for the entire content of this submitted manuscript and approve submission.

Concept and design of the study: AL, NRJ. Conducting experiments: NQ. Set up and validation of analyses: LL, NQ, NRJ. Analyzing and interpreting data: AL, BHT, LTM, NRJ SSD. Writing, critically reviewing, and approving the manuscript: AL, BHT, LL, LTM, NQ, NRJ, SSD.

Corresponding author

Correspondence to Sarah Seberg Diemar.

Ethics declarations

Conflict of interest

Niklas Rye Jørgensen and Allan Linneberg declare that they have received the assays for the study as a donation from IDS Plc but have no further conflicts of interest. Sarah Seberg Diemar, Line Tang Møllehave, Nadia Quardon, Louise Lylloff, and Betina Heinsbæk Thuesen declare that they have no conflicts of interest.

Statement of human rights

The study was approved by the Ethical Committee of The Capital Region (approval ‘H-2-2013-080’). All procedures performed were in accordance with the Helsinki Declaration as revised in 1983. Informed written consent was obtained from all participants prior to participation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diemar, S.S., Møllehave, L.T., Quardon, N. et al. Effects of age and sex on osteocalcin and bone-specific alkaline phosphatase—reference intervals and confounders for two bone formation markers. Arch Osteoporos 15, 26 (2020). https://doi.org/10.1007/s11657-020-00715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-020-00715-6

Keywords

Navigation