Skip to main content

Advertisement

Log in

In vitro characterization of PBLG-g-HA/ PLLA nanocomposite scaffolds

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The purpose of the present study was to synthesize a new composites scaffold containing poly(γ-benzyl-L-glutamate) modified hydroxyapatite/(poly (L-lactic acid)) (PBLG-g-HA/PLLA) and to investigate their in vitro behaviour on bone mesenchymal stromal cells (BMSCs). The results demonstrated that BMSC proliferation was significantly increased on PBLG-g-HA/PLLA scaffolds after 3 and 7 days post seeding when compared to PLLA and HA/PLLA scaffolds. The in vitro osteogenic differentiation also favoured the composite PBLG-g-HA/PLLA scaffolds when compared to controls by significantly increasing Runx2, ALP or osteocalcin mRNA expression as assessed by real-time PCR. The results illustrate the potential of PBLG-g-HA/ PLLA scaffolds for bone tissue engineering applications. And the in vivo testing further confirms the PBLG-g-HA/PLLA scaffolds’ potentioal for healing critical bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng N, Dai J, Cheng X, et al. Porous CaP/silk Composite Scaffolds to Repair Femur Defects in an Osteoporotic Model[J]. Journal of Materials science Materials in Medicine, 2013, 24(8): 1 963–1 975

    Article  Google Scholar 

  2. Miron RJ, Gruber R, Hedbom E, et al. Impact of Bone Harvesting Techniques on Cell Viability and the Release of Growth Factors of Autografts[J]. Clinical Implant Dentistry and Related Research, 2013, 15(4): 481–489

    Article  Google Scholar 

  3. Miron RJ, Hedbom E, Saulacic N, et al. Osteogenic Potential of Autogenous Bone Grafts Harvested with Four Different Surgical Techniques[J]. Journal of Dental Research, 2011, 90(12): 1 428–1 433

    Article  Google Scholar 

  4. Miron R, Zhang Y. Osteoinduction A Review of Old Concepts with New Standards[J]. Journal of Dental Research, 2012, 91(8): 736–744

    Article  Google Scholar 

  5. Heinemann S, Heinemann C, Jager M, et al. Effect of Silica and Hydroxyapatite Mineralization on the Mechanical Properties and the Biocompatibility of Nanocomposite Collagen Scaffolds[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4 323–4 331

    Article  Google Scholar 

  6. Costantino PD, Chaplin JM, Wolpoe ME, et al. Applications of Fastsetting Hydroxyapatite Cement: Cranioplasty[J]. Otolaryngology—Head and Neck Surgery, 2000, 123(4): 409–412

    Article  Google Scholar 

  7. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone Substitutes: An Update[J]. Injury, 2005, 36(3): S20–S27

    Article  Google Scholar 

  8. Dinarvand P, Seyedjafari E, Shafiee A, et al. New Approach to Bone Tissue Engineering: Simultaneous Application of Hydroxyapatite and Bioactive Glass Coated on a poly (L-lactic acid) Scaffold[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4 518–4 524

    Article  Google Scholar 

  9. Wei J, Dai Y, Chen Y, et al. Mechanical and Thermal Properties of Polypeptide Modified Hydroxyapatite/poly (L-lactide) nanocomposites[J]. Sci. China Chem., 2011, 54(3): 431–437

    Article  Google Scholar 

  10. Li X, Feng Q, Cui F. In vitro Degradation of Porous Nanohydroxyapatite/Collagen/PLLA Scaffold Reinforced by Chitin Fibres[J]. Materials Science and Engineering: C, 2006, 26(4):716–720

    Article  Google Scholar 

  11. Gupta A, Kumar V. New Emerging Trends in Synthetic Biodegradable Polymers-Polylactide: A Critique[J]. European Polymer Journal, 2007, 43(10): 4 053–4 074

    Article  Google Scholar 

  12. Cai Q, Yang J, Bei J, et al. A Novel Porous Cells Scaffold Made of Polylactide-dextran Blend by Combining Phase-separation and Particle-leaching Techniques[J]. Biomaterials, 2002, 23(23): 4 483–4 492

    Article  Google Scholar 

  13. Mei F, Zhong J, Yang X, et al. Improved Biological Characteristics of poly (L-lactic acid) Electrospun Membrane by Incorporation of Multiwalled Carbon Nanotubes/Hydroxyapatite Nanoparticles[J]. Biomacromolecules, 2007, 8(12):3729–3735

    Article  Google Scholar 

  14. Charles LF, Kramer ER, Shaw MT, et al. Self-reinforced Composites of Hydroxyapatite-coated PLLA Fibers: Fabrication and Mechanical Characterization[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17: 269–277

    Article  Google Scholar 

  15. Šupová M. Problem of Hydroxyapatite Dispersion in Polymer Matrices: A Review[J]. Journal of Materials Science: Materials in Medicine, 2009, 20(6): 1 201–1 213

    Google Scholar 

  16. Takayama T, Todo M. Improvement of Mechanical Properties of Hydroxyapatite Particle-filled poly (l-lactide) Biocomposites Using Lysine Tri-isocyanate[J]. Journal of materials science, 2009, 44(18): 5 017–5 020

    Article  Google Scholar 

  17. Wei J, Liu A, Chen L, et al. The Surface Modification of Hydroxyapatite Nanoparticles by the Ring Opening Polymerization of Gamma-benzyl-l-glutamate N-carboxyanhydride[J]. Macromolecular bioscience, 2009, 9(7): 631–638

    Article  Google Scholar 

  18. Wu C, Miron R, Sculean A, et al. Proliferation, Differentiation and Gene Expression of Osteoblasts in Boron-containing Associated with Dexamethasone Deliver from Mesoporous Bioactive Glass Scaffolds[J]. Biomaterials, 2011, 32(29): 7 068–7 078

    Article  Google Scholar 

  19. Zhang Y, Ma Y, Wu C, et al. Platelet-derived Growth Factor BB Genereleased Scaffolds: Biosynthesis and Characterization[J]. Journal of Tissue Engineering and Regenerative Medicine, 2013, doi: 10.1002/ term.1825

    Google Scholar 

  20. Zhang Y, Wu C, Luo T, et al. Synthesis and Inflammatory Response of a Novel Silk Fibroin Scaffold Containing BMP7 Adenovirus for Bone Regeneration[J]. Bone, 2012, 51(4): 704–713

    Article  Google Scholar 

  21. Zhang Y, Wu C, Friis T, et al. The Osteogenic Properties of CaP/Silk Composite Scaffolds[J]. Biomaterials, 2010, 31(10): 2 848–2 856

    Article  Google Scholar 

  22. Kumar P, Pillay V, Modi G, et al. Self-assembling Peptides: Implications for Patenting in Drug Delivery and Tissue Engineering[J]. Recent Patents on Drug Delivery & Formulation, 2011, 5(1):24–51

    Article  Google Scholar 

  23. Durrieu M-C, Pallu S, Guillemot F, et al. Grafting RGD Containing Peptides onto Hydroxyapatite to Promote Osteoblastic Cells Adhesion[J]. Journal of Materials Science: Materials in Medicine, 2004, 15(7): 779–786

    Google Scholar 

  24. Wildemann B, Kandziora F, Krummrey G, et al. Local and Controlled Release of Growth Factors (Combination of IGF-I and TGF-beta I, and BMP-2 Alone) from a Polylactide Coating of Titanium Implants Does not Lead to Ectopic Bone Formation in Sheep Muscle[J]. Journal of controlled release, 2004, 95(2): 249–256

    Article  Google Scholar 

  25. Hayashi M, Muramatsu H, Sato M, et al. Surgical Treatment of Facial Fracture by Using Unsintered Hydroxyapatite Particles/Poly l-lactide Composite Device (OSTEOTRANS MX〈 sup〉®〈/sup〉): A Clinical Study on 17 Cases[J]. Journal of Cranio-Maxillofacial Surgery, 2013, 41(8): 783–788

    Article  Google Scholar 

  26. Hasegawa S, Ishii S, Tamura J, et al. A 5–7 Year in vivo study of High-strength Hydroxyapatite/poly (L-lactide) Composite Rods for the Internal Fixation of Bone Fractures[J]. Biomaterials, 2006, 27(8): 1 327–1 332

    Article  Google Scholar 

  27. Matsuo A, Chiba H, Takahashi H, et al. Clinical Application of A Custom-made Bioresorbable Raw Particulate Hydroxyapatite/poly-Llactide Mesh Tray for Mandibular Reconstruction[J]. Odontology / the Society of the Nippon Dental University, 2010, 98(1): 85–88

    Article  Google Scholar 

  28. M. S. Problem of Hydroxyapatite Dispersion in Polymer Matrices: A Review[J]. J Mater Sci-Mater Med, 2009, 20(6): 1 201–1 213

    Article  Google Scholar 

  29. Gugala Z, Gogolewski S. Differentiation, Growth and Activity of Rat Bone Marrow Stromal Cells on Resorbable Poly(L/DL-lactide) Membranes[J]. Biomaterials, 2004, 25(12): 2 299–2 307

    Article  Google Scholar 

  30. Jones GL, Motta A, Marshall MJ, et al. Osteoblast: Osteoclast Cocultures on Silk Fibroin, Chitosan and PLLA Films[J]. Biomaterials, 2009, 30(29): 5 376–5 384

    Article  Google Scholar 

  31. Komlev V, Peyrin F, Mastrogiacomo M, et al. Kinetics of in vivo Bone Deposition by Bone Marrow Stromal Cells into Porous Calcium Phosphate Scaffolds: An X-ray Computed Microtomography Study[J]. Tissue engineering, 2006, 12(12): 3 449–3 458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zhang  (张萌).

Additional information

Funded by the National Natural Science Foundation of China (81271108&51203073) and the Project from Education Department of Jiangxi Province (GJJ13107)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Yang, S., Miron, R.J. et al. In vitro characterization of PBLG-g-HA/ PLLA nanocomposite scaffolds. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 841–847 (2014). https://doi.org/10.1007/s11595-014-1006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-1006-4

Key words

Navigation