Skip to main content
Log in

Highly sensing graphene oxide/poly-arginine-modified electrode for the simultaneous electrochemical determination of buspirone, isoniazid and pyrazinamide drugs

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

For the first time, an electrochemical method was proposed for the simultaneous determination of isoniazid (INZ), pyrazinamide (PYZ) and buspirone HCl (BPH) at graphene oxide (GO)/poly-l-arginine (PAG)-modified glassy carbon electrode (GCE). The GO was synthesized by modified Hummer’s method and the surface morphologies of GO and PAG were characterized by scanning electron microscopy (SEM). The simultaneous determinations of INZ, PYZ and BPH were determined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The proposed GO/PAG/GCE sensor has a wide linear range of 20 to 1,400 μM for INZ, 25 to 900 μM for BPH and 25 to 1,600 μM for PYZ, respectively. The low limit of detection (LOD) values was found as 2.59, 3.54 and 3.28 μM respectively, for INZ, BPH and PYZ. The practicality and applicability of the proposed electrode was demonstrated in blood serum and commercially available pharmaceutical tablets. In addition, the obtained results for pharmaceutical tablets were in good agreement with the label claim of the tablets and the proposed method could be employed in pharmaceutical laboratories in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim AK (2009) Science 324:1530

    Article  CAS  Google Scholar 

  2. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) Nature 490:192

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  4. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Trends Anal Chem 29:954

    Article  CAS  Google Scholar 

  5. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Crit Rev Solid State Mater Sci 35:52

    Article  CAS  Google Scholar 

  6. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  7. Mani V, Devadas B, Chen SM (2013) Biosens Bioelectron 41:309

    Article  CAS  Google Scholar 

  8. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH (2013) Acc Chem Res 46:2211

    Article  CAS  Google Scholar 

  9. Thangamuthu R, Pan YC, Chen SM (2010) Electroanalysis 22:1812

    Article  CAS  Google Scholar 

  10. Cheemalapati S, Palanisamy S, Chen SM (2014) J Appl Electrochem 44:317

    Article  CAS  Google Scholar 

  11. Santos DP, Bergamini MF, Fogg AG, Zanoni MVB (2005) Microchim Acta 151:127

    Article  CAS  Google Scholar 

  12. Wei M, Ming SD (2007) Chin J Anal Chem 35:66

    Article  Google Scholar 

  13. Zhang K, Luo P, Wu JJ, Wang W, Ye B (2013) Anal Methods 5:5044

    Article  CAS  Google Scholar 

  14. Zhang F, Gu S, Ding Y, Zhou L, Zhang Z, Li L (2013) J Electroanal Chem 698:25

    Article  CAS  Google Scholar 

  15. Abedin Khan MDJ, Ahmed Z (2013) Int J Gen Med Pharm 2:2319

    Google Scholar 

  16. Yan X, Bo X, Guo L (2011) Sensors Actuators B 155:837

    Article  CAS  Google Scholar 

  17. Nagaraja P, Murthy KCS, Yathirajan HS (1996) Talanta 43:1075

    Article  CAS  Google Scholar 

  18. Khuhawar MY, Rind FMA (2002) J Chromatogr B 766:357

    Article  CAS  Google Scholar 

  19. Parfitt K, Sweetman SC, Blake PS, Parsons AV (1999) Martindale - The extra pharmacopoeia, 32nd edn. Pharmaceutical Press, London, pp 643–644

    Google Scholar 

  20. Dommisse CS, De Vane CL (1985) Intell Clin Pharmacol 19:624

    CAS  Google Scholar 

  21. Gannu R, Yamsani SK, Palem CR, Yamsani VV, Kotagiri H (2009) Anal Chim Acta 647:226

    Article  CAS  Google Scholar 

  22. Jaisuresh K (2013) Nephrology 2013:3

    Google Scholar 

  23. Hest RV, Baars H, Kik S, Gerven PV, Trompenaars MC, Kalisvaart N, Keizer S, Borgdorff M, Mensen M, Cobelens F (2004) Clin Infect Dis 39:488

    Article  Google Scholar 

  24. Tafazoli S, Mashregi M, O’Brien PJ (2008) Toxicol Appl Pharmacol 229:94

    Article  CAS  Google Scholar 

  25. Takka S, Sakr A, Goldberg A (2003) J Control Release 88:147

    Article  CAS  Google Scholar 

  26. Oliveira PRD, Oliveira MM, Zarbin JGA, Marcolino-Junior LH, Bergamini MF (2012) Sensors Actuators B 171-172:795

    Article  CAS  Google Scholar 

  27. Safavi A, Karimi MA, Nezhad MRH, Kamali R, Saghir N (2004) Spectrochim Acta A 60:765

    Article  CAS  Google Scholar 

  28. Wu B, Wang Z, Xue Z, Zhou X, Du J, Liu X, Lu X (2012) Analyst 137:3644

    Article  CAS  Google Scholar 

  29. Cheemalapati S, Palanisamy S, Chen SM (2013) Int J Electrochem Sci 8:3953

    CAS  Google Scholar 

  30. Chaitanya AK, Saravanan RS, Jeevanantham S, Vignesh R, Karthik P (2012) Adv Pharmacoepidemiol Drug Saf 1–108:1

    Google Scholar 

  31. Madan J, Dwivedi AK, Singh S (2005) Anal Chim Acta 538:345

    Article  CAS  Google Scholar 

  32. Faria AF, Souza MVN, Bruns RE, Oliveira MAL (2010) Talanta 82:333

    Article  CAS  Google Scholar 

  33. Gong Z, Basir Y, Chu D, Tipton MM (2009) J Chromatogr B 877:1698

    Article  CAS  Google Scholar 

  34. Maher HM, Youssef RM (2008) Chemom Intell Lab Syst 94:95

    Article  CAS  Google Scholar 

  35. Bergamini MF, Santos DP, Zanoni MVB (2013) J Electroanal Chem 690:47

    Article  CAS  Google Scholar 

  36. Foroutan SM, Zarghi A, Shafaati AR, Khoddam A (2004) IL Farmacol 59:739

    Article  CAS  Google Scholar 

  37. Jain R, Rani S, Goyal RN (1981) Electrochim Acta 26:1519

    Article  CAS  Google Scholar 

  38. Riekes MK, Pereira RN, Rauber GS, Cuffini SL, Campos CEM, Silva MAS, Stulzer HK (2012) J Pharm Biomed Anal 70:188

    Article  CAS  Google Scholar 

  39. Chen SZ, Xu F, Zhang H, Zhang ZQ (1993) Talanta 40:1551

    Article  CAS  Google Scholar 

  40. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228

    Article  CAS  Google Scholar 

  41. Li Y, Ye Z, Zhou J, Liu J, Song G, Zhang K, Ye B (2012) J Electroanal Chem 687:51

    Article  CAS  Google Scholar 

  42. Jiang C, Yang T, Jiao K, Gao H (2008) Electrochim Acta 53:2917

    Article  CAS  Google Scholar 

  43. Cheemalapati S, Palanisamy S, Mani V, Chen SM (2013) Talanta 117:297

    Article  CAS  Google Scholar 

  44. Johnsson K, Schultz PG (1994) J Am Chem Soc 116:7425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by the King Saud University, Deanship of Scientific Research, College of Science, Research Center, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devadas, B., Cheemalapati, S., Chen, SM. et al. Highly sensing graphene oxide/poly-arginine-modified electrode for the simultaneous electrochemical determination of buspirone, isoniazid and pyrazinamide drugs. Ionics 21, 547–555 (2015). https://doi.org/10.1007/s11581-014-1179-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1179-z

Keywords

Navigation