Skip to main content
Log in

Electrocatalytic oxidation and amperometric determination of sulfasalazine using bimetal oxide nanoparticles–decorated graphene oxide composite modified glassy carbon electrode at neutral pH

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Cube-shaped samarium orthovanadate (SmVO4) nanoparticles were interconnected with a graphene oxide sheet (GOS) using a simple and eco-friendly method to generate a SmVO4@GOS nanocomposite. SmVO4 was characterized using various spectroscopic and microscopic techniques, which confirmed the wrapping of GOS around the SmVO4 nanoparticles. SmVO4@GOS was then used to modify a glassy carbon electrode (GCE), which was evaluated for its electrochemical performance toward the assay of sulfasalazine (SSZ), an antibiotic drug. Cyclic voltammetry and amperometry were both used for the assay of SSZ using the SmVO4@GOS-modified GCE at pH 7. The modified amperometric sensor is more sensitive, with a low detection limit (2.16 nM) and wide linear range of 20 nM–667 μM (Ag/AgCl). The electrochemical oxidation of SSZ was tested with blood serum and urine samples at physiological pH with recoveries in the range 96.1–98.6%. It indicates that the modified electrochemical sensor has good sensitivity and practical applicability toward SSZ detection. In the field of non-enzymatic sensors, SmVO4@GOS/GCE provides a highly promising performance. Therefore, the electrochemical sensors have capacity for extensive analytical applications in biomedical devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kotouček M, Skopalová J, Michálková D (1997) Electroanalytical study of salazosulfapyridine and biseptol components at the mercury electrode. Anal Chim Acta 353:61–69

    Article  Google Scholar 

  2. Jahani PM, Jafari M, Gupta VK, Agarwal S (2020) Electrochemical detection of sulfasalazine in real samples by and ionic liquid modified nanostructure 2@ SiO 4 O3 GO/Fe carbon paste electrode. Int J Electrochem Sci 15:6829–6840

    Article  CAS  Google Scholar 

  3. Beitollahi H, Yoonesfar R (2017) Sensitive detection of sulfasalazine at a carbon paste electrode modified with NiO/CNT nanocomposite and ionic liquid in pharmaceutical and biological samples. Inorganic and Nano-Metal Chemistry 47:1441–1448

    Article  CAS  Google Scholar 

  4. Koseoglu TS, Durgut A (2020) Development of a novel molecularly imprinted overoxidized polypyrrole electrode for the determination of sulfasalazine. Electroanalysis 32:2072–2081

    Article  CAS  Google Scholar 

  5. Ahmadpour H, Hosseini SMM (2019) A solid-phase luminescence sensor based on molecularly imprinted polymer-CdSeS/ZnS quantum dots for selective extraction and detection of sulfasalazine in biological samples. Talanta 194:534–541

    Article  CAS  PubMed  Google Scholar 

  6. Sadeghi S, Garmroodi A (2014) Sensitive detection of sulfasalazine at screen printed carbon electrode modified with functionalized multiwalled carbon nanotubes. J Electroanal Chem 727:171–178

    Article  CAS  Google Scholar 

  7. Wang J, Chang Y, Zhang P, Lie SQ, Gao PF, Huang CZ (2015) Cu2+-mediated fluorescence switching of gold nanoclusters for the selective detection of clioquinol. Analyst 140:8194–8200

    Article  CAS  PubMed  Google Scholar 

  8. Bondiolotti G, Pollera C, Pirola R, Bareggi S (2006) Determination of 5-chloro-7-iodo-8-quinolinol (clioquinol) in plasma and tissues of hamsters by high-performance liquid chromatography and electrochemical detection. J Chromatogr B 837:87–91

    Article  CAS  Google Scholar 

  9. Baby JN, Sriram B, Wang S-F, George M (2021) Integration of samarium vanadate/carbon nanofiber through synergy: an electrochemical tool for sulfadiazine analysis. J Hazard Mater 408:124940

    Article  CAS  PubMed  Google Scholar 

  10. Nataraj N, Chen S-M (2021) Samarium vanadate nanospheres integrated carbon nanofiber composite as an efficient electrocatalyst for antituberculosis drug detection in real samples. Colloids Surf, A 617:126385

    Article  CAS  Google Scholar 

  11. Mani V, Govindasamy M, Chen S-M, Karthik R, Huang S-T (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183:2267–2275

    Article  CAS  Google Scholar 

  12. Govindasamy M, Chen S-M, Mani V, Devasenathipathy R, Umamaheswari R, Santhanaraj KJ, Sathiyan A (2017) Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J Colloid Interface Sci 485:129–136

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen T-D, Dinh C-T, Nguyen D-T, Do T-O (2009) A novel approach for monodisperse samarium orthovanadate nanocrystals: controlled synthesis and characterization. The J Physical Chemistry C 113:18584–18595

    Article  CAS  Google Scholar 

  14. Babulal SM, Koventhan C, Chen SM, Hung W (2022) Construction of sphere like samarium vanadate nanoparticles anchored graphene nanosheets for enhanced electrochemical detection of nitrofurantoin in biological fluids. Compos B Eng 237:109847

    Article  CAS  Google Scholar 

  15. Sakthivel M, Sukanya R, Chen S-M, Ho K-C (2018) Synthesis and characterization of samarium-substituted molybdenum diselenide and its graphene oxide nanohybrid for enhancing the selective sensing of chloramphenicol in a milk sample. ACS Appl Mater Interfaces 10:29712–29723

    Article  CAS  PubMed  Google Scholar 

  16. Xu X, Niu C, Duan M, Wang X, Huang L, Wang J, Pu L, Ren W, Shi C, Meng J (2017) Alkaline earth metal vanadates as sodium-ion battery anodes. Nat Commun 8:1–11

    Article  Google Scholar 

  17. Andrukaitis E, Cooper JP, Smit JH (1995) Lithium intercalation in the divalent metal vanadates MeV2O6 (Me Cu Co, Ni, Mn or Zn). J Power Sources 54:465–469

    Article  CAS  Google Scholar 

  18. Rajaji U, Govindasamy M, Sha R, Alshgari RA, Juang R-S, Liu T-Y (2022) Surface engineering of 3D spinel Zn3V2O8 wrapped on sulfur doped graphitic nitride composites: investigation on the dual role of electrocatalyst for simultaneous detection of antibiotic drugs in biological fluids. Compos B Eng 242:110017

    Article  CAS  Google Scholar 

  19. Xiang L, Fan J, Zhong W, Mao L, You K, Yin D (2019) Heteroatom-induced band-reconstruction of metal vanadates for photocatalytic cyclohexane oxidation towards KA-oil selectivity. Appl Catal A 575:120–131

    Article  CAS  Google Scholar 

  20. Selvan RK, Gedanken A, Anilkumar P, Manikandan G, Karunakaran C (2009) Synthesis and characterization of rare earth orthovanadate (RVO 4; R= La, Ce, Nd, Sm, Eu & Gd) nanorods/nanocrystals/nanospindles by a facile sonochemical method and their catalytic properties. J Cluster Sci 20:291–305

    Article  Google Scholar 

  21. Ghotekar S, Pansambal S, Pagar K, Pardeshi O, Oza R (2018) Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity. Nanochemistry Research 3:189–196

    CAS  Google Scholar 

  22. He Y, Wang Y, Zhao L, Wu X, Wu Y (2011) Preparation, characterization and activity evaluation of V2O5–LaVO4 composites under visible light irradiation. J Mol Catal A: Chem 337:61–67

    Article  CAS  Google Scholar 

  23. Fan W, Song X, Bu Y, Sun S, Zhao X (2006) Selected-control hydrothermal synthesis and formation mechanism of monazite-and zircon-type LaVO4 nanocrystals. J Phys Chem B 110:23247–23254

    Article  CAS  PubMed  Google Scholar 

  24. Veldurthi NK, Eswar NK, Singh SA, Madras G (2018) Cocatalyst free Z-schematic enhanced H2 evolution over LaVO4/BiVO4 composite photocatalyst using Ag as an electron mediator. Appl Catal B 220:512–523

    Article  CAS  Google Scholar 

  25. Liu X, Qin H, Fan W (2016) Enhanced visible-light photocatalytic activity of a gC 3 N 4/m-LaVO 4 heterojunction: band offset determination. Science Bulletin 61:645–655

    Article  CAS  Google Scholar 

  26. Wang X, Zhang L, Lin H, Nong Q, Wu Y, Wu T, He Y (2014) Synthesis and characterization of a ZrO 2/gC 3 N 4 composite with enhanced visible-light photoactivity for rhodamine degradation. RSC Adv 4:40029–40035

    Article  CAS  Google Scholar 

  27. E. Tamilalagan, M. Akilarasan, S.-M. Chen, T.-W. Chen, Y.C. Huang, Q. Hao, W. Lei. A sonochemical assisted synthesis of hollow sphere structured tin (IV) oxide on graphene oxide sheets for the low-level detection of environmental pollutant mercury in biological and foodstuff samples. Ultrasonics Sonochemistry, (2020) 105164.

  28. Li T, Zhao L, He Y, Cai J, Luo M, Lin J (2013) Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl Catal B 129:255–263

    Article  CAS  Google Scholar 

  29. Muthumariappan A, Govindasamy M, Chen S-M, Sakthivel K, Mani V (2017) Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn 3 O 4 microcubes for ultrasensitive determination of nitrite. Microchim Acta 184:3625–3634

    Article  CAS  Google Scholar 

  30. Muthumariyappan A, Rajaji U, Chen S-M, Chen T-W, Li Y-L, Ramalingam RJ (2019) One-pot sonochemical synthesis of Bi2WO6 nanospheres with multilayer reduced graphene nanosheets modified electrode as rapid electrochemical sensing platform for high sensitive detection of oxidative stress biomarker in biological sample. Ultrason Sonochem 57:233–241

    Article  CAS  PubMed  Google Scholar 

  31. Li Q, Wu J-T, Liu Y, Qi X-M, Jin H-G, Yang C, Liu J, Li G-L, He Q-G (2021) Recent advances in black phosphorus-based electrochemical sensors: a review. Anal Chim Acta 1170:338480

    Article  CAS  PubMed  Google Scholar 

  32. Govindasamy M, Jian C-R, Kuo C-F, Hsieh A-H, Sie J-L, Huang C-H (2022) A chemiresistive biosensor for detection of cancer biomarker in biological fluids using CVD-grown bilayer graphene. Microchim Acta 189:1–12

    Article  Google Scholar 

  33. Govindasamy M, Wang S-F, Huang C-H, Alshgari RA, Ouladsmane M (2022) Colloidal synthesis of perovskite-type lanthanum aluminate incorporated graphene oxide composites: electrochemical detection of nitrite in meat extract and drinking water. Microchim Acta 189:1–11

    Article  Google Scholar 

  34. Nehru R, Hsu Y-F, Wang S-F, Dong C-D, Govindasamy M, Habila MA, AlMasoud N (2021) Graphene oxide@ Ce-doped TiO2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion. Microchim Acta 188:1–11

    Article  Google Scholar 

  35. Li Q, Xia Y, Wan X, Yang S, Cai Z, Ye Y, Li G (2020) Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater Sci Eng, C 109:110615

    Article  CAS  Google Scholar 

  36. Li G, Zhong P, Ye Y, Wan X, Cai Z, Yang S, Xia Y, Li Q, Liu J, He Q (2019) A highly sensitive and stable dopamine sensor using shuttle-like α-Fe2O3 nanoparticles/electro-reduced graphene oxide composites. J Electrochem Soc 166:B1552

    Article  CAS  Google Scholar 

  37. Liu H, Xiong R, Zhong P, Li G, Liu J, Wu J, Liu Y, He Q (2020) Nanohybrids of shuttle-like α-Fe2O3 nanoparticles and nitrogen-doped graphene for simultaneous voltammetric detection of dopamine and uric acid. New J Chem 44:20797–20805

    Article  CAS  Google Scholar 

  38. Li F, Ni B, Zheng Y, Huang Y, Li G (2021) A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite. Surfaces and Interfaces 26:101375

    Article  CAS  Google Scholar 

  39. Dağcı K, Alanyalıoğlu M (2016) Preparation of free-standing and flexible graphene/Ag nanoparticles/poly (pyronin Y) hybrid paper electrode for amperometric determination of nitrite. ACS Appl Mater Interfaces 8:2713–2722

    Article  PubMed  Google Scholar 

  40. Rajaji U, Manavalan S, Chen S-M, Govindasamy M, Chen T-W, Maiyalagan T (2019) Microwave-assisted synthesis of europium (III) oxide decorated reduced graphene oxide nanocomposite for detection of chloramphenicol in food samples. Compos B Eng 161:29–36

    Article  CAS  Google Scholar 

  41. Errandonea D, Achary SN, Pellicer-Porres J, Tyagi AK (2013) Pressure-induced transformations in PrVO4 and SmVO4 and isolation of high-pressure metastable phases. Inorg Chem 52:5464–5469

    Article  CAS  PubMed  Google Scholar 

  42. Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474

    Article  CAS  Google Scholar 

  43. Larachi FC, Pierre J, Adnot A, Bernis A (2002) Ce 3d XPS study of composite CexMn1− xO2− y wet oxidation catalysts. Applied Surface Science 195:236–250

    Article  CAS  Google Scholar 

  44. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectrosc Relat Phenom 135:167–175

    Article  CAS  Google Scholar 

  45. Saisree S, Aswathi R, Nair JA, Sandhya K (2020) Radical sensitivity and selectivity in the electrochemical sensing of cadmium ions in water by polyaniline-derived nitrogen-doped graphene quantum dots. New J Chem 45:110–122

    Article  Google Scholar 

  46. Sasikumar R, Govindasamy M, Chen S-M, Chieh-Liu Y, Ranganathan P, Rwei S-P (2017) Electrochemical determination of morin in kiwi and strawberry fruit samples using vanadium pentoxide nano-flakes. J Colloid Interface Sci 504:626–632

    Article  CAS  PubMed  Google Scholar 

  47. Govindasamy M, Chen S-M, Mani V, Sathiyan A, Merlin JP, Al-Hemaid FM, Ali MA (2016) Simultaneous determination of dopamine and uric acid in the presence of high ascorbic acid concentration using cetyltrimethylammonium bromide–polyaniline/activated charcoal composite. RSC Adv 6:100605–100613

    Article  CAS  Google Scholar 

  48. Lahcen AA, Rauf S, Aljedaibi A, de Oliveira Filho JI, Beduk T, Mani V, Alshareef HN, KN, (2021) Salama Laser-scribed graphene sensor based on gold nanostructures and molecularly imprinted polymers: application for Her-2 cancer biomarker detection. Sensors and Actuators B: Chemical 347:130556

    Article  CAS  Google Scholar 

  49. Nigović B, Hocevar SB (2011) Antimony film electrode for direct cathodic measurement of sulfasalazine. Electrochim Acta 58:523–527

    Article  Google Scholar 

  50. Buoro RM, Diculescu VC, Lopes IC, Serrano SH, Oliveira-Brett AM (2014) Electrochemical oxidation of sulfasalazine at a glassy carbon electrode. Electroanalysis 26:924–930

    Article  CAS  Google Scholar 

  51. Msagati TA, Ngila JC (2002) Voltammetric detection of sulfonamides at a poly (3-methylthiophene) electrode. Talanta 58:605–610

    Article  CAS  PubMed  Google Scholar 

  52. Amani-Beni Z, Nezamzadeh-Ejhieh A (2018) NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal Chim Acta 1031:47–59

    Article  CAS  PubMed  Google Scholar 

  53. Sadeghi S, Motaharian A, Moghaddam AZ (2012) Electroanalytical determination of sulfasalazine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sens Actuators, B Chem 168:336–344

    Article  CAS  Google Scholar 

  54. Nigović B, Šimunić B, Hocevar S (2009) Voltammetric measurements of aminosalicylate drugs using bismuth film electrode. Electrochim Acta 54:5678–5683

    Article  Google Scholar 

  55. Savalia R, Chatterjee S (2018) Sensing of sulfasalazine—cysteine transporter inhibitor with platinum nanoflowers decorated on carbon nanotubes by electrochemical reduction. Sens Actuators, B Chem 277:39–46

    Article  CAS  Google Scholar 

  56. Sriram B, Baby JN, Hsu YF, Wang SF, Benadict Joseph X, George M, Veerakumar P, Lin KC (2021) MnCo2O4 microflowers anchored on P-doped g-C3N4 nanosheets as an electrocatalyst for voltammetric determination of the antibiotic drug sulfadiazine. ACS Appl Electronic Mater 3:3915–3926

    Article  CAS  Google Scholar 

  57. Velmurugan S, Yang TC-K, Chen S-W, Chen J-N (2021) Metal-organic frameworks derived ZnO-Co3O4 pn heterojunction photocatalyst for the photoelectrochemical detection of sulfadiazine. J Environ Chem Eng 9:106169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was also funded by the Researchers Supporting Project Number (RSP-2021/266) King Saud University, Riyadh, Saudi Arabia. 

Funding

Financial support was from the Ministry of Science and Technology, MOST 110–2221-E-131–009, Taiwan, and Research Center for Intelligent Medical Devices of Ming Chi University of Technology, Taiwan. This work was also funded by the Researchers Supporting Project Number (RSP-2021/266) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Ping Chen, Ruey-Shin Juang or Ting-Yu Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.58 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaji, U., M.S., R., K., Y.K. et al. Electrocatalytic oxidation and amperometric determination of sulfasalazine using bimetal oxide nanoparticles–decorated graphene oxide composite modified glassy carbon electrode at neutral pH. Microchim Acta 189, 409 (2022). https://doi.org/10.1007/s00604-022-05498-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05498-w

Keywords

Navigation