Skip to main content
Log in

AC impedance analysis, equivalent circuit, and modulus behavior of NaFeP2O7 ceramic

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

II-NaFeP2O7 was prepared by conventional ceramic fabrication technique. Rietveld refinement, impedance properties, conductivity dispersion, electric modulus, and their scaling were carried out as a function of frequency and temperature. Thus, X-ray diffraction analysis indicates that the sample exhibits a single-phase nature with a monoclinic structure. In addition, analysis of Nyquist plots as well as modulus analysis revealed the contribution of two electrically active regions corresponding to bulk mechanism and distribution of grain boundaries. The near values of activation energies, obtained from the impedance and modulus spectra, confirm that the transport happens through an ion hopping mechanism, dominated by the motion of the Na+ ions in the framework of the investigated material resulting from intersecting tunnels or voids where Na+ is located.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim JS, Lee KH, Cheon CI (2009) J Electroceram 22:233–237

    Article  CAS  Google Scholar 

  2. Kim JW, Yoon DC, Jeon MS, Kang DW, Kim JW, Lee HS (2010) Curr Appl Phys 10:1297–1301

    Article  Google Scholar 

  3. Jacob J, Abdul Khadar M, Lonappan A, Mathew KT (2008) Bull Mater Sci 31:847–851

    Article  CAS  Google Scholar 

  4. Ben Rhaiem A, Chouaib S, Guidara K (2010) Ionics 16:455–463

    Article  CAS  Google Scholar 

  5. Zhang G, Jiang S, Zhang Y, Xie T (2009) Curr Appl Phys 9:1434–1437

    Article  Google Scholar 

  6. Kim H, Shakoor RA, Park C, Lim SY, Kim J-S, Jo YN, Cho W, Miyasaka K, Kahraman R, Jung Y, Choi JW (2013) Adv Funct Mater 23:1147–1155

    Article  CAS  Google Scholar 

  7. Uebou Y, Okada S, Egashira M, Yamaki J-I (2002) Solid State Ionics 148:323

    Article  CAS  Google Scholar 

  8. Barpanda P, Nishimura S-I, Yamada A (2012) Adv Energy Mater 2:841

    Article  CAS  Google Scholar 

  9. Ordońez Regil E, García González N, BarocioAm SM (2012) J Anal Chem 3:512

    Article  Google Scholar 

  10. Parajόn-Costa BS, Mercader RC, Baran EJ (2013) J Phys Chem Solids 74:354–359

    Article  Google Scholar 

  11. Gamondes JP, d’Yvoire F, Boulle A (1971) CR Acad Sci Paris 272:49

    CAS  Google Scholar 

  12. Grunze I, Grunze H, Anorg Z (1984) Allg Chem 512:39

    Article  CAS  Google Scholar 

  13. Moya-Pizarro T, Salmon R, Fournes SL, Le Flem G, Wanklin BS, Hagenmuller P (1984) J Solid State Chem 53:387

    Article  CAS  Google Scholar 

  14. Nasri S, Megdiche M, Guidara K, Gargouri M (2013) Ionics 19:1921–1931

    Article  CAS  Google Scholar 

  15. Nasri S, Megdiche M, Gargouri M, Guidara K. doi: 10.1007/s11581-013-0969-z

  16. Gabelica Robert M, Goreaud M, Ph L, Raveau B (1982) J Solid State Chem 45:389–395

    Article  CAS  Google Scholar 

  17. Terebilenko KV, Kirichok AA, Baumer VN, Maksym S, Slobodyanik NS, Gütlich P (2010) J Solid State Chem 183:1473–1476

    Article  CAS  Google Scholar 

  18. Yakuphanoglu F, Yahia IS, Barim G, Filiz Senkal B (2010) Synth Met 160:1718

    Article  CAS  Google Scholar 

  19. Macdonald JR (1987) Impedance spectroscopy. Wiley, NY

    Google Scholar 

  20. Kumar P, Singh BP, Sinha TP, Singh NK (2011) Physica B 406:139–143

    Article  CAS  Google Scholar 

  21. Ang C, Yu Z, Jing Z, Lunkenheimer P, Loidl A (2000) Phys Rev B 61:3922–3926

    Article  CAS  Google Scholar 

  22. Bauerle JE (1969) J Phys Chem Solids 30:2657

    Article  CAS  Google Scholar 

  23. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  24. Mahamoud H, Louati B, Hlel F, Guidara K (2011) J Alloys Compd 509:6083–6089

    Article  CAS  Google Scholar 

  25. Megdiche M, Perrin-pellegrino C, Gargouri M (2014) J Alloys Compd 584:209–215

    Article  CAS  Google Scholar 

  26. Kumar A, Manna I (2008) Physica B 403:2298–2305

    Article  CAS  Google Scholar 

  27. Borsa F, Torgeson DR, Martin SW, Patel HK (1992) Phys Rev B 46:795

    Article  CAS  Google Scholar 

  28. Mahato DK, Dutta A, Sinha TP (2011) Indian J Pure Appl Phys 49:613–618

    Google Scholar 

  29. Nagi KL, Leon C (1998) Solid State Ionics 125:81

    Google Scholar 

  30. Pissis P, Kyritsis A (1997) Solid State Ionics 97:105

    Article  CAS  Google Scholar 

  31. Oueslati A, Hlel F, Guidara K, Gargouri M (2010) J Alloys Compd 492:508–514

    Article  CAS  Google Scholar 

  32. Saha S, Sinha TP (2002) Phys Rev B65:134103–134107

    Article  Google Scholar 

  33. Padmasree KP, Kanchan DK, Kkulkarni AR (2006) Solid State Ionics 177:475–482

    Article  CAS  Google Scholar 

  34. Louati B, Guidara K, Gargouri M (2009) J Alloys Compd 472:347–351

    Article  CAS  Google Scholar 

  35. Rao KS et al (2008) J Alloys Compd 464:497–507

    Article  CAS  Google Scholar 

  36. Mahato DK, Alo D, Sinha TP (2011) Physica B 406:2703–2708

    Article  CAS  Google Scholar 

  37. Saha S, Sinha TP (2002) Phys Rev B 65:134103–134107

    Article  Google Scholar 

  38. Behera B et al (2007) J Alloys Compd 436:226–232

    Article  CAS  Google Scholar 

  39. Jonscher AK (1977) Nature 267:673

    Article  CAS  Google Scholar 

  40. Louati B, Gargouri M, Guidara K, Mhiri T (2005) Phys Chem Solids 66:762

    Article  CAS  Google Scholar 

  41. Roling B, Happe A, Funke K, Ingram MD (1997) Phys Rev Lett 78:2160

    Article  CAS  Google Scholar 

  42. Ghosh A, Pan A (2000) Phys Rev Lett 84:2188

    Article  CAS  Google Scholar 

  43. Pan A, Ghosh A (2002) Phys Rev B 66:012301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nasri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, S., Megdiche, M. & Gargouri, M. AC impedance analysis, equivalent circuit, and modulus behavior of NaFeP2O7 ceramic. Ionics 21, 67–78 (2015). https://doi.org/10.1007/s11581-014-1147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1147-7

Keywords

Navigation