Skip to main content
Log in

Dynamical correlation patterns and corresponding community structure in neural spontaneous activity at criticality

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

It has been considered that the state in the vicinity of a critical point, which is the point between ordered and disordered states, can underlie and facilitate information processing of the brain in various aspects. In this research, we numerically study the influence of criticality on one aspect of brain information processing, i.e., the community structure, which is an important characteristic of complex networks. We examine community structure of the functional connectivity in simulated brain spontaneous activity, which is based on dynamical correlations between neural activity patterns at different positions. The brain spontaneous activity is simulated by a neural field model whose parameter covers subcritical, critical, and supercritical regions. Then, the corresponding dynamical correlation patterns and community structure are compared. In the critical region, we found some distinctive properties, namely high correlation and correlation switching, high modularity and a low number of modules, high stability of the dynamical functional connectivity, and moderate flexibility of the community structure across temporal scales. We also discuss how these characteristics might improve information processing of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27(2):77–87

    Article  PubMed  CAS  Google Scholar 

  • Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28(6):1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108(18):7641–7646

    Article  PubMed  CAS  Google Scholar 

  • Beggs JM (2008) The critical hypothesis: how local cortical networks might optimize information processing. Philos Trans R Soc A 336:329–343

    Article  Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11167–11177

    PubMed  CAS  Google Scholar 

  • Benayoun M, Cowan JD, van Drongelen W, Wallace E (2010) Avalanches in a stochastic model of spiking neurons. PLoS Comput Biol 6(7):e1000846

    Article  PubMed  Google Scholar 

  • Bertschinger N, Natschläger T (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput 16(7):1413–1436

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin F, Haughton V, Hyde J (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  PubMed  CAS  Google Scholar 

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theor Exp 2008(10):P10008

    Article  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1):81–98

    Article  PubMed  Google Scholar 

  • Chialvo DR, Balenzuela P, Fraiman D (2008) The brain: what is critical about it?. AIP Conf Proc 1028:28–45

    Article  Google Scholar 

  • Chow CC, Coombes S (2006) Existence and wandering of bumps in a spiking neural network model. SIAM J Appl Dyn Syst 5(4):552–574

    Article  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in resting-state data. Am J Neuroradiol 22:1326–1333

    PubMed  CAS  Google Scholar 

  • de Arcangelis L, Herrmann HJ (2010) Learning as a phenomenon occurring in a critical state. Proc Natl Acad Sci USA 107(9):3977–3981

    Article  PubMed  Google Scholar 

  • Ermentrout GB, Cowan JD (1979) A mathematical theory of visual hallucination patterns. Biol Cybern 34(3):137–150

    Article  PubMed  CAS  Google Scholar 

  • Fenn DJ, Porter MA, McDonald M, Williams S, Johnson NF, Jones NS (2009) Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007–2008 credit crisis. Chaos 19(3):033119

    Article  PubMed  Google Scholar 

  • Ferrarini L, Veer IM, Baerends E, van Tol M-J, Renken RJ, van der Wee NJA, Veltman DJ, Aleman A, Zitman FG, Penninx BWJH, van Buchem MA, Reiber JHC, Rombouts SARB, Milles J (2009) Hierarchical functional modularity in the resting-state human brain. Hum Brain Mapp 30(7):2220–2231

    Article  PubMed  Google Scholar 

  • Folias SE, Bressloff PC (2004) Breathing pulses in an excitatory neural network. SIAM J Appl Dyn Syst 3(3):378–407

    Article  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuation in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    Article  PubMed  CAS  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Rogers LJ, Holmes MD, Silbergeld DL (2000) Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J Neurosci Methods 95:111–121

    Article  PubMed  CAS  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258

    Article  PubMed  CAS  Google Scholar 

  • Hahn G, Petermann T, Havenith MN, Yu S, Singer W, Plenz D, Nikolić D (2010) Neuronal avalanches in spontaneous activity in vivo. J Neurophysiol 104(6):3312–3322

    Article  PubMed  Google Scholar 

  • Haldeman C, Beggs JM (2005) Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys Rev Lett 94(5):058101

    Article  PubMed  Google Scholar 

  • Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15(4):247–262

    Article  PubMed  Google Scholar 

  • Han F, Caporale N, Dan Y (2008) Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60(2):321–327

    Article  PubMed  CAS  Google Scholar 

  • He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4):e5226

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Henrie JA, Shapley R (2005) LFP power spectra in V1 cortex: the graded effect of stimulus contrast. J Neurophysiol 94:479–490

    Article  PubMed  Google Scholar 

  • Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24):10240–10245

    Article  PubMed  CAS  Google Scholar 

  • Kinouchi O, Copelli M (2006) Optimal dynamical range of excitable networks at criticality. Nat Phys 2:348–351

    Article  CAS  Google Scholar 

  • Kishimoto K, Amari S (1979) Existence and stability of local excitation in homogeneous neural fields. J Math Biol 7(4):303–318

    Article  PubMed  CAS  Google Scholar 

  • Klaus A, Yu S, Plenz D (2011) Statistical analyses support power law distributions found in neuronal avalanches. PLoS One 6(5):e19779

    Article  PubMed  CAS  Google Scholar 

  • Klemm K, Eguíluz VM, Toral R, Miguel MS (2003) Global culture: a noise-induced transition in finite systems. Phys Rev E 67(4):045101(R)

    Article  Google Scholar 

  • La Camera G, Rauch A, Thurbon D, Lüscher H-R, Senn W, Fusi S (2006) Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. J Neurophysiol 96(6):3448–3464

    Article  PubMed  Google Scholar 

  • Laing CR (2005) Spiral waves in nonlocal equation. SIAM J Appl Dyn Syst 4(3):588–606

    Article  Google Scholar 

  • Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci USA 106(41):17558–17563

    Article  PubMed  CAS  Google Scholar 

  • Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7(2):119–132

    Article  PubMed  CAS  Google Scholar 

  • Lu ET, Hamilton RJ (1991) Avalanches and the distribution of solar flares. Astrophys J 380:L89–L92

    Article  Google Scholar 

  • Mackey MC, Longtin A, Lasota A (1990) Noise-induced global asymptotic stability. J Stat Phys 60(5-6):735–751

    Article  Google Scholar 

  • Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. Neuroimage 44(3):715–723

    Article  PubMed  Google Scholar 

  • Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):036104

    Article  CAS  Google Scholar 

  • Park B, Kim JI, Lee D, Jeong S-O, Lee JD, Park H-J (2012) Are brain networks stable during a 24-hour period. Neuroimage 59(1):456–466

    Article  PubMed  Google Scholar 

  • Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis MAL, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci USA 106(37):15921–15926

    Article  PubMed  CAS  Google Scholar 

  • Petersen CCH, Hahn TTG, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci USA 100(23):13638–13643

    Article  PubMed  CAS  Google Scholar 

  • Plenz D, Chialvo DR (2009) Scaling properties of neuronal avalanches are consistent with critical dynamics. arXiv:0912.5369

  • Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. Neuroimage 56(4):2068–2079

    Article  PubMed  Google Scholar 

  • Schwarz AJ, Gozzi A, Bifone A (2008) Community structure and modularity in networks of correlated brain activity. Magn Reson Imaging 26(7):914–920

    Article  PubMed  Google Scholar 

  • Sornette A, Sornette D (1989) Self-organized criticality and earthquakes. Europhys Lett 9(3):197–202

    Article  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10(2):127–141

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kaneko T, Aoyagi T (2009) Recurrent infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity. Neural Comput 21(4):1038–1067

    Article  PubMed  Google Scholar 

  • Tass P (1995) Cortical pattern formation during visual hallucinations. J Biol Phys 21(3):177–210

    Article  Google Scholar 

  • Termsaithong T, Oku M, Aihara K (2012) Dynamical coherence patterns in neural field model at criticality. Artif Life Robot. doi:10.1007/s10015-012-0020-x

  • Thurner S, Windischberger C, Moser E, Walla P, Barth M (2003) Scaling laws and persistence in human brain activity. Phys A 326:511–521

    Article  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91(11):5033–5037

    Article  PubMed  CAS  Google Scholar 

  • Touboul J, Destexhe A (2010) Can power-law scaling and neuronal avalanches arise from stochastic dynamics? PLoS One 5(2):e8982

    Article  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol Cybern 13(2):55–80

    CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Aihara Innovative Mathematical Modelling Project, the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” initiated by the Council for Science and Technology Policy (CSTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Termsaithong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Termsaithong, T., Aihara, K. Dynamical correlation patterns and corresponding community structure in neural spontaneous activity at criticality. Cogn Neurodyn 7, 381–393 (2013). https://doi.org/10.1007/s11571-013-9251-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-013-9251-3

Keywords

Navigation