Skip to main content

Complex Synchronization Patterns in the Human Connectome Network

  • Conference paper
  • First Online:
Proceedings of ECCS 2014

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

A major challenge in neuroscience is posed by the need for relating the emerging dynamical features of brain activity with the underlying modular structure of neural connections, hierarchically organized throughout several scales. The spontaneous emergence of coherence and synchronization across such scales is crucial to neural function, while its anomalies often relate to pathological conditions. Here we provide a numerical study of synchronization dynamics in the human connectome network. Our purpose is to provide a detailed characterization of the recently uncovered broad dynamic regime, interposed between order and disorder, which stems from the hierarchical modular organization of the human connectome. In this regime—similar in essence to a Griffiths phase—synchronization dynamics are trapped within metastable attractors of local coherence. Here we explore the role of noise, as an effective description of external perturbations, and discuss how its presence accounts for the ability of the system to escape intermittently from such attractors and explore complex dynamic repertoires of locally coherent states, in analogy with experimentally recorded patterns of cerebral activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that this definition of \(\sigma \), that we call, “time variability” is closely related to the chimera index introduced by Shanahan [31]. While chimera indices are averaged between individual network moduli and measure the onset of local coherence, \(\sigma \) is defined at the global level and records fluctuations of the global order parameter.

References

  1. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)

    Article  Google Scholar 

  2. Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106(6), 2035–2040 (2009)

    Article  ADS  Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–98 (2009)

    Article  Google Scholar 

  4. Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Kaiser, M.: A tutorial in connectome analysis: topological and spatial features of brain networks. NeuroImage 57(3), 892–907 (2011)

    Article  Google Scholar 

  6. Meunier, D., Lambiotte, R., Bullmore, E.: Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010)

    Article  Google Scholar 

  7. Zhou, C., Zemanova, L., Zamora-López, G., Hilgetag, C.C., Kurths, J.: Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97(23) (2006)

    Google Scholar 

  8. Ivković, M., Amy, K., Ashish, R.: Statistics of weighted brain networks reveal hierarchical organization and Gaussian degree distribution. PLoS ONE 7(6), e35029 (2012)

    Article  ADS  Google Scholar 

  9. Zhou, C., Zemanova, L., Zamora-López, G., Hilgetag, C.C., Kurths, J.: Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys. 9(6), 178–178 (2007)

    Article  ADS  Google Scholar 

  10. Kaiser, M., Goerner, M., Hilgetag, C.: Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J. Phys. 9, 110 (2007)

    Article  ADS  Google Scholar 

  11. Kaiser, M., Hilgetag, C.C.: Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front. Neuroinform. 4(8) (2010)

    Google Scholar 

  12. Moretti, P., Muñoz, M.A.: Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 4(2521) (2013)

    Google Scholar 

  13. Vojta, T.: Rare region effects at classical, quantum and nonequilibrium phase transitions. J. Phys. A 39(22), R143–R205 (2006)

    Google Scholar 

  14. Muñoz, M.A., Juhász, R., Castellano, C., Ódor, G.: Griffiths phases on complex networks. Phys. Rev. Lett. 105, 128701 (2010)

    Article  ADS  Google Scholar 

  15. Steinmetz, P.N., Roy, A., Fitzgerald, P.J., Hsiao, S.S., Johnson, K.O., Niebur, E.: Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404(6774), 187–190 (2000)

    Article  ADS  Google Scholar 

  16. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  17. Buzsáki, G.: Rhythms of the Brain. Oxford University Press, NY (2006)

    Book  MATH  Google Scholar 

  18. Breakspear, M., Stam, C.J.: Dynamics of a neural system with a multiscale architecture. Phil. Trans. R. Soc. Lond. B 360(1457), 1051–1074 (2005)

    Article  Google Scholar 

  19. Villegas, P., Moretti, P., Muñoz, M.A.: Frustrated hierarchical synchronization and emergent complexity in the human connectome network. Sci. Rep. 4(5990) (2014)

    Google Scholar 

  20. Rosenblum, M.G., Pikovsky, A., Kurths, J.: Synchronization—A universal concept in nonlinear sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  21. Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. Lect. Not. Phys. 39, 420–422 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Strogatz, S.H.: From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1), 1–20 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Acebrón, J.A., Bonilla, L.L., Pérez-Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  24. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Google Scholar 

  25. Chialvo, D.R.: Emergent Complex Neural Dyn. Nat. Phys. 6, 744–750 (2010)

    Google Scholar 

  26. Deco, G., Jirsa, V.K.: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32(10), 3366–3375 (2012)

    Article  Google Scholar 

  27. Haimovici, A., Tagliazucchi, E., Balenzuela, P., Chialvo, D.R.: Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110, 178101 (2013)

    Article  ADS  Google Scholar 

  28. Cabral, J., Hugues, E., Sporns, O., Deco, G.: Role of local network oscillations in resting-state functional connectivity. NeuroImage 57(1), 130–139 (2011)

    Article  Google Scholar 

  29. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72, 027104 (2005)

    Article  ADS  Google Scholar 

  30. Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Shanahan, M.: Metastable chimera states in community-structured oscillator networks. Chaos 20(1), 013108 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. Eckmann, J.P., Feinerman, O., Gruendlinger, L., Moses, E., Soriano, J., Tlusty, T.: The physics of living neural networks. Phys. Rep. 449(1–3), 54–76 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

    Article  ADS  Google Scholar 

  34. Wildie, M., Shanahan, M.: Metastability and chimera states in modular delay and pulse-coupled oscillator networks. Chaos 22(4), 043131 (2012)

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from J. de Andalucía P09-FQM-4682 and the Spanish MINECO FIS2012-37655-C02-01 and FIS2013-43201-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Villegas, P., Hidalgo, J., Moretti, P., Muñoz, M.A. (2016). Complex Synchronization Patterns in the Human Connectome Network. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_7

Download citation

Publish with us

Policies and ethics