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                    Abstract
Many cellular processes rely on the cell’s ability to transport material to and from the nucleus. Networks consisting of many microtubules and actin filaments are key to this transport. Recently, the inhibition of intracellular transport has been implicated in neurodegenerative diseases such as Alzheimer’s disease and Amyotrophic Lateral Sclerosis. Furthermore, microtubules may contain so-called defective regions where motor protein velocity is reduced due to accumulation of other motors and microtubule-associated proteins. In this work, we propose a new mathematical model describing the motion of motor proteins on microtubules which incorporate a defective region. We take a mean-field approach derived from a first principle lattice model to study motor protein dynamics and density profiles. In particular, given a set of model parameters we obtain a closed-form expression for the equilibrium density profile along a given microtubule. We then verify the analytic results using mathematical analysis on the discrete model and Monte Carlo simulations. This work will contribute to the fundamental understanding of inhomogeneous microtubules providing insight into microscopic interactions that may result in the onset of neurodegenerative diseases. Our results for inhomogeneous microtubules are consistent with prior work studying the homogeneous case.
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Appendices
A Homogeneous Microtubules: Proof of Theorem 1 and Corollary 1
                        
Equation (17) may be rewritten in the form of a system of two first order ODEs for density \(\rho _\varepsilon \) and flux \(\mathcal {F}_\varepsilon \) (see also (14)):
$$\begin{aligned} \left\{ \begin{array}{rl} \dfrac{\varepsilon }{2}\rho _\varepsilon ' &{}= -\omega _0^{-1}\mathcal {F}_\varepsilon +\rho _\varepsilon (1-\rho _\varepsilon ), \\ \mathcal {F}_\varepsilon '&{}=\varOmega _\mathrm{A}-(\varOmega _\mathrm{A}+\varOmega _\mathrm{D}) \rho _\varepsilon . \end{array}\right. \end{aligned}$$

                    (47)
                

Fig. 7[image: figure 7]
Left: phase portrait for (47) with \(\varepsilon =0.01\), \(\varOmega _\mathrm{A}=0.7\) and \(\varOmega _\mathrm{D}=0.3\); Right: sketch of the phase portrait for (47) with \(\varepsilon \ll 1\), the black circle represents the stationary point


Full size image

Next, we discuss the phase portrait for this system with \(\varepsilon \ll 1\), depicted in Fig. 7. Away from curve \(\gamma \) defined by
$$\begin{aligned} \gamma :=\left\{ (\rho ,\mathcal {F})\left| \mathcal {F}=\omega _0\rho (1-\rho ) \text { and }\begin{array}{l}0\le \rho \le 1,\\ 0\le \mathcal {F} \le \omega _0/4\end{array}\right. \right\} , \end{aligned}$$

                    (48)
                

the trajectories of (47), parametrized by \(0\le x\le \ell \), have almost horizontal slope in \((\rho ,\mathcal {F})\) plane. This is because the slope of \(\rho _\varepsilon \) is of the order \(\varepsilon ^{-1}\), that is \(\rho _\varepsilon '(x)\sim \varepsilon ^{-1}\), whenever the point \((\rho _\varepsilon (x),\mathcal {F}_\varepsilon (x))\) is away from \(\gamma \) (it follows from the first equation in (47)). It would be natural to expect that as \(\varepsilon \) vanishes, trajectory \(\left\{ (\rho _\varepsilon (x),\mathcal {F}_\varepsilon (x)),0\le x \le \ell \right\} \) approaches the arch \(\gamma \) and this trajectory is contained in a given thin neighborhood of \(\gamma \) for sufficiently small \(\varepsilon \). In this subsection, it will be shown that the behavior of the solution is more complicated than simply evolving near \(\gamma \).
To describe how the solution \(\rho _\varepsilon (x)\) behaves for \(\varepsilon \ll 1\), we introduce the following notation for parts of curve \(\gamma \). Namely,
$$\begin{aligned} \gamma _{l}:= & {} \gamma \cap \left\{ 0\le \rho < 0.5 \right\} ,\\ \gamma _{r,+}:= & {} \gamma \cap \left\{ 0.5\le \rho \le \rho _\text {eq} \right\} ,\\ \gamma _{r,-}:= & {} \gamma \cap \left\{ \rho _\text {eq}\le \rho \le 1 \right\} . \end{aligned}$$

Here \(\rho _\text {eq}:=\varOmega _\mathrm{A}/(\varOmega _\mathrm{A}+\varOmega _\mathrm{D})\). Let us also introduce the following horizontal segment
$$\begin{aligned} \varGamma :=\left\{ (\rho ,\mathcal {F}):\mathcal {F}=\omega _0/4,~ 0\le \rho \le 0.5 \right\} , \end{aligned}$$

and the solution g(x; s, a) to (19), i.e., the initial value problem of the first order obtained by the formal limit as \(\varepsilon \rightarrow 0\) in (17):
$$\begin{aligned} \omega _0(1-2g)\partial _x g=\varOmega _\mathrm{A}-(\varOmega _\mathrm{A}+\varOmega _\mathrm{D})g,~~~g(s;s,a)=a. \end{aligned}$$

                    (49)
                

First, note that \(\gamma _l\), which is the left part of the curve \(\gamma \), is unstable, that is all trajectories, excluding \(\gamma _l\), are directed away from \(\gamma _l\) in the vicinity of \(\gamma _l\). The right part of the curve \(\gamma \), consisting of curve segments \(\gamma _{r,+}\) and \(\gamma _{r,-}\), is stable, attracting all trajectories in its vicinity, except those that follow \(\varGamma \). We note that this exception, when \(\gamma _{r,+}\) loses its stability, occurs at the interface point \((\rho =1/2,\mathcal {F}=\omega _0/4)\) where \(\gamma _{r,+}\) meets \(\gamma _l\). All trajectories reaching this point near (not necessarily intersecting) the curves \(\gamma _{r,+}\) and \(\gamma _l\) continue along \(\varGamma \).
Given specific values of \(\alpha ,\beta \in (0,1)\) in boundary conditions (18), the statement of Theorem 1 as well as representation formula (23) can be simply verified by careful inspection of the phase portrait depicted in Fig. 7. Specifically, for all \(0<\alpha ,\beta <1\), one can draw a path \(\left\{ (\rho (x),\mathcal {F}(x)):0\le x\le \ell \right\} \) along arrows in Fig. 7 (right), which starts at vertical line \(\rho =\alpha \) and ends at vertical line \(\rho =1-\beta \), and such a path will be unique for given \(\alpha \) and \(\beta \) (see also left column of Fig. 8 for specific examples). Instead of checking each couple \((\alpha ,\beta )\), one would split ranges of \((\alpha ,\beta )\) into sub-domains within which the outer solution has constant or smoothly varying shape, as it is done in proof below.

                  Proof of Theorem 1

                  Consider the following functions:
$$\begin{aligned} \rho _\alpha (x)=g(x;0,\alpha ) \text { and } \rho _\beta (x)=g(x;\ell ,\max \left\{ 0.5,1-\beta \right\} ). \end{aligned}$$

These functions can be thought of as one-sided solutions (i.e., satisfying one of the boundary conditions, either \(\rho (0)=\alpha \) or \(\rho (\ell )=\max \left\{ 0.5,1-\beta \right\} \)) of Equation (17) for \(\varepsilon =0\). The reason we choose \(\rho (\ell )=\max \left\{ 0.5,1-\beta \right\} \) instead of \(\rho _\beta (\ell )=1-\beta \) is because there is no solution continuous at \(x=\ell \) with \(\rho (\ell )<0.5\) as visible in Fig. 7 (curve \(\gamma \) is unstable in region \(\left\{ 0\le \rho < 0.5 \right\} \)).

                  Introduce also the corresponding fluxes:
$$\begin{aligned} \mathcal {F}_\alpha (x)=\omega _0\rho _\alpha (x) (1-\rho _{\alpha }(x))\text { and }\mathcal {F}_{\beta }(x)=\omega _0\rho _\beta (x) (1-\rho _{\beta }(x)). \end{aligned}$$

From the definition of function g it follows that \(\mathcal {F}_\alpha (x)\) and \(\mathcal {F}_\beta (x)\) are both monotonic functions, and function \(\mathcal {F}_\beta (x)\) is defined for all \(0\le x < \ell \). Moreover, \(\mathcal {F}_\beta (x)\) can be extended onto \((-\infty ,\ell ]\) and
$$\begin{aligned} \lim \limits _{x\rightarrow -\infty }\mathcal {F}_{\beta }(x)=\mathcal {F}_\text {eq}, \text { where }\mathcal {F}_\text {eq}:=\omega _0\dfrac{\varOmega _\mathrm{A}\varOmega _\mathrm{D}}{(\varOmega _\mathrm{A}+\varOmega _\mathrm{D})^2}. \end{aligned}$$

Consider case \(\alpha \ge 0.5\). From Fig. 7, it follows that a trajectory emanating for initial point \((\alpha ,\mathcal {F})\) for any \(0<\mathcal {F}<\omega _0/4\) immediately reaches \(\gamma _r\) and stays on \(\gamma _r\cup \varGamma \) for \(0<x\le \ell \). Thus, at \(x=0\) trajectory \(\left\{ (\rho _0(x),\mathcal {F}_0(x)): 0\le x \le \ell \right\} \), describing the outer solution, jumps from \((\alpha ,\mathcal {F}_0(0))\) at \(t=0\) to \(\gamma _r\):
$$\begin{aligned} \rho _0(x)= \left\{ \begin{array}{ll} \alpha , &{} x=0,\\ \rho _\beta (x),&{} 0< x \le \ell . \end{array} \right. \end{aligned}$$

                    (50)
                

In the case where \(\alpha < 0.5\), denote by \(0\le x_J\le \ell \) location at which fluxes \(\mathcal {F}_\alpha (x)\) and \(\mathcal {F}_\beta (x)\) intersect, that is,
$$\begin{aligned} \mathcal {F}_\alpha (x_J)=\mathcal {F}_\beta (x_J). \end{aligned}$$

                    (51)
                

Equality (51) implies that either \(\rho _\alpha (x_J)=1-\rho _\beta (x_J)\) or \(\rho _\alpha (x_J)=\rho _\beta (x_J)\). If \(\rho _\alpha (x_J)=\rho _\beta (x_J)\), then since \(\rho _\alpha \) and \(\rho _\beta \) are solutions of the same first order ordinary differential equation, these two functions coincide \(\rho _\alpha (x)\equiv \rho _\beta (x)\).

                  We show now that either
$$\begin{aligned} \text {there exists at most one }x_J \le 1\hbox { or }\rho _\alpha (x)\equiv \rho _{\beta }(x). \end{aligned}$$

                    (52)
                

Indeed, since \(\alpha <0.5\), trajectory \((\rho _\alpha (x),\mathcal {F}_\alpha (x))\) evolves on \(\gamma _{l}\) for all \(0\le x \le \ell \) where solution \(\rho _\alpha (x)\) exists, and \(\mathcal {F}_{\alpha }(x)\) monotonically increases. Trajectory \((\rho _\beta (x),\mathcal {F}_\beta (x))\) evolves also for all \(0\le x \le \ell \) within either \(\gamma _{r,+}\) or \(\gamma _{r,-}\). If \((\rho _\beta (x),\mathcal {F}_\beta (x))\) evolves within \(\gamma _{r,-}\), then \(\mathcal {F}_\beta (x)\) is monotonically decreasing in x whereas \(\mathcal {F}_\alpha (x)\) is monotonically increasing x, and thus equation \(\mathcal {F}_\alpha (x)=\mathcal {F}_\beta (x)\) can have at most one root in this case. If \((\rho _\beta (x),\mathcal {F}_\beta (x))\) evolves within \(\gamma _{r,+}\), then both \(\mathcal {F}_\alpha (x)\) and \(\mathcal {F}_\beta (x)\) increase with x. Assume that there are at least two distinct numbers \(x_J^{(1)}\), \(x_J^{(2)}\) such that \(x_J^{(1)}<x_J^{(2)}\) and \(\mathcal {F}_\alpha (x_J^{(i)})=\mathcal {F}_{\beta }(x_J^{(i)})\), \(i=1,2\). Assume also that \(x_J^{(1)}\) and \(x_J^{(2)}\) are neighbor roots of equation \(\mathcal {F}_\alpha (x)= \mathcal {F}_{\beta }(x)\), i.e., for all \(x\in (x_J^{(1)},x_J^{(2)})\) we have \(\mathcal {F}_\alpha (x)\ne \mathcal {F}_{\beta }(x)\). Then due to
$$\begin{aligned} \partial _x \mathcal {F}=\varOmega _\mathrm{A}-(\varOmega _\mathrm{A}+\varOmega _\mathrm{D})g, \text { where }\mathcal {F}(x)=\omega _0 g(x)(1-g(x)) \end{aligned}$$

and \(\rho _\alpha (x_J^{(i)})<0.5\) \(\rho _\alpha (x_J^{(i)})>0.5\), \(i=1,2\), we have that \(\partial _x \mathcal {F}_\alpha (x_J^{(i)})>\partial _x \mathcal {F}_\beta (x_J^{(i)})\), \(i=1,2\). Noting that a smooth function can’t have the same sign of its derivative at two successive roots we arrive to contradiction. Therefore, such \(x_J\) is at most one and (52) is shown.
Fig. 8[image: figure 8]
Left: the thick line represents the trajectories from Examples 1–4; it starts at \(\rho =\alpha \) and ends at \(\rho =1-\beta \), the black circle at (0.8,0.16) represents the stationary solution. Right: The thick line represents the outer solution \(\rho _0(x)\) for Examples 1-4. In Examples 2 and 3, branches \(g(x;0,\alpha )\) and \(g(x;1,\max \{0.5,1-\beta \})\) extend slightly beyond the intervals where they are a part of the outer solution \(\rho _0(x)\) (thin curves)


Full size image

Fig. 9[image: figure 9]
The thick line represents the trajectories from Example 5; it starts at \(\rho =\alpha \) and ends at \(\rho =1-\beta \), the black circle at (0.8,0.16) represents the stationary solution. Right: the thick line represents the outer solution \(\rho _0(x)\) for Example 5


Full size image


                  If \(\mathcal {F}_\alpha (x)\ne \mathcal {F}_\beta (x)\) for all \(0\le x \le 1\), then define \(x_J\) as follows:
$$\begin{aligned} x_J=\left\{ \begin{array}{ll} 0, &{} \mathcal {F}_\beta (x)<\mathcal {F}_\alpha (x)\text { for all }0<x<\ell , \\ 1, &{} \mathcal {F}_\alpha (x)<\mathcal {F}_\beta (x)\text { for all }0<x<\ell . \end{array} \right. \end{aligned}$$

We note that point \(x=x_J\) is where the outer solution jumps from \(\rho _\alpha (x)\) to \(\rho _\beta (x)\), thus
$$\begin{aligned} \rho _0(x)=\left\{ \begin{array}{ll} \rho _\alpha (x),&{}0\le x<x_J,\\ \rho _\beta (x),&{}x_J<x<\ell . \end{array} \right. \end{aligned}$$

                    (53)
                

and \(\rho _0(\ell )=1-\beta \).

                  Formulas (50), (53), and (18) complete the proof of Theorem 1. \(\square \)

                B Examples of Solutions Given by (23)
To illustrate the result of Theorem 1 we continue with the following examples. We take \(\omega _0=1\), \(\ell =1\), \(\varOmega _\mathrm{A}=0.8\) and \(\varOmega _\mathrm{D}=0.2\), and we vary the boundary rates \(\alpha \) and \(\beta \). The outer solution for each example, as both a trajectory in \((\rho , \mathcal {F})\) plane and the plot of \(\rho _0(x)\), is depicted in Fig. 8.

                  Example 1

                  \(\alpha =0.4\) and \(\beta =0.39\).
$$\begin{aligned} \rho _0(x)=\left\{ \begin{array}{ll}0.4,&{}x=0\\ g(x;1,0.61),&{}0<x\le 1.\end{array}\right. \end{aligned}$$


                
                  Example 2

                  \(\alpha =0.1\) and \(\beta =0.4\).
$$\begin{aligned} \rho _0(x)=\left\{ \begin{array}{ll} g(x;0,0.1),&{} 0\le x \le x_J,\,x_J\approx 0.133\\ g(x;1,0.6),&{} x_J< x \le 1. \end{array}\right. \end{aligned}$$


                
                  Example 3

                  \(\alpha =0.1\) and \(\beta =0.85\).
$$\begin{aligned} \rho _{0}(x)=\left\{ \begin{array}{ll} g(x;0,0.1),&{} 0\le x \le x_J,\, x_J\approx 0.135,\\ g(x;1,1/2),&{} x_J<x<1,\\ 0.15,&{} x=1.\end{array}\right. \end{aligned}$$


                
                  Example 4

                  \(\alpha =0.9\) and \(\beta =0.8\).
$$\begin{aligned} \rho _{0}(x)=\left\{ \begin{array}{ll} 0.9,&{} x=0,\\ g(x;1,1/2),&{} 0<x<1,\\ 0.2,&{} x=1. \end{array} \right. \end{aligned}$$

The case \(x_J>1\) corresponds to the case of fast motor proteins or, more precisely, unidirectional motion dominates attachment/detachment, and thus resulting density is low in MT, \(\rho _0(x)<0.5\) for \(x\in (0,1)\). Consider the following example:

                
                  Example 5

                  \(\alpha =0.05\), \(\beta =0.85\), \(\varOmega _\mathrm{A}=0.16\) and \(\varOmega _\mathrm{D}=0.04\).
$$\begin{aligned} \rho _0(x)=\left\{ \begin{array}{ll} g(x,0,\alpha ), &{} 0\le x<1,\\ 1-\beta , &{} x=1. \end{array} \right. \end{aligned}$$

The solution is depicted in Fig. 9.

                

Rights and permissions
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Ryan, S.D., McCarthy, Z. & Potomkin, M. Motor Protein Transport Along Inhomogeneous Microtubules.
                    Bull Math Biol 83, 9 (2021). https://doi.org/10.1007/s11538-020-00838-4
Download citation
	Received: 05 May 2020

	Accepted: 19 November 2020

	Published: 07 January 2021

	DOI: https://doi.org/10.1007/s11538-020-00838-4


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Mathematical biology
	Motor proteins
	Microtubules
	Phase transitions
	Defective transport

Mathematics Subject Classification
	34F05
	35Q92
	92B05








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					44.192.45.10
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature




	






    