Skip to main content

Advertisement

Log in

Invasion Dynamics in an Intraguild Predation System with Predator-Induced Defense

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Intraguild predation systems describe food webs in which an omnivorous predator competes with an intermediate prey for a basal resource. The classical intraguild predation system with Holling type II predation terms has the limitation of not being able to reproduce coexistence between predators in resource-rich environments despite its ubiquity in ecological systems. In this study, adaptive predator-induced and fitness-dependent defense of the intermediate predator is included into the model. In contrast to previous studies, this is done without an artificial bounding term. Numerical bifurcation software is used to show that adaptive defense mechanisms can significantly enhance parameter regimes leading to coexistence. Two different adaptation parameters are distinguished and linked to adaptations under different environmental conditions. The results indicate that the form of the reactivity–accuracy trade-off depends on the state of the environment. Finally, it is shown that an impact of adaptivity on dispersal abilities can considerably change shape and speed of invasion waves on a one-dimensional domain, which is important as those are the main measurable variables when examining data from biological invasions. The results indicate that a locally perfectly adaptive system can be globally (transient) maladaptive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams PA (1984) Foraging time optimization and interactions in food webs. Am Nat 124(1):80–96

    Article  Google Scholar 

  • Abrams PA (2005) Adaptive dynamics’ vs.‘adaptive dynamics. J Evol Biol 18(5):1162–1165

    Article  Google Scholar 

  • Abrams PA, Allison TD (1982) Complexity, stability, and functional response. Am Nat 119(2):240–249

    Article  MathSciNet  Google Scholar 

  • Abrams PA, Fung SR (2010) Prey persistence and abundance in systems with intraguild predation and type-2 functional responses. J Theor Biol 264(3):1033–1042

    Article  MathSciNet  Google Scholar 

  • Abrams PA, Matsuda H (1997) Prey adaptation as a cause of predator-prey cycles. Evolution 51(6):1742–1750

    Article  Google Scholar 

  • Aránguiz-Acuña A, Ramos-Jiliberto R, Sarma N, Sarma SS, Bustamante RO, Toledo V (2010) Benefits, costs and reactivity of inducible defences: an experimental test with rotifers. Freshw Biol 55(10):2114–2122

    Article  Google Scholar 

  • Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7(7):557–564

    Article  Google Scholar 

  • Banks PB, Dickman CR (2007) Alien predation and the effects of multiple levels of prey naiveté. Trends Ecol Evol 22(5):229–230

    Article  Google Scholar 

  • Benard MF (2004) Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst 35:651–673

    Article  Google Scholar 

  • Bengfort M, Malchow H, Hilker FM (2016) The Fokker–Planck law of diffusion and pattern formation in heterogeneous environments. J Math Biol 73(3):683–704

    Article  MathSciNet  Google Scholar 

  • Benson DL, Maini PK, Sherratt JA (1998) Unravelling the Turing bifurcation using spatially varying diffusion coefficients. J Math Biol 37(5):381–417

    Article  MathSciNet  Google Scholar 

  • Chittka L, Skorupski P, Raine NE (2009) Speed-accuracy tradeoffs in animal decision making. Trends Ecol Evol 24(7):400–407

    Article  Google Scholar 

  • Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. In: Mathematical proceedings of the Cambridge Philosophical Society, vol 43. Cambridge University Press, Cambridge, pp 50–67

    Article  MathSciNet  Google Scholar 

  • Dahl J, Peckarsky BL (2002) Induced morphological defenses in the wild: predator effects on a mayfly, Drunella coloradensis. Ecology 83(6):1620–1634

    Article  Google Scholar 

  • Daugherty MP, Harmon JP, Briggs CJ (2007) Trophic supplements to intraguild predation. Oikos 116:662–677

    Article  Google Scholar 

  • Engel K, Tollrian R (2009) Inducible defences as key adaptations for the successful invasion of daphnia lumholtzi in North America? Proc R Soc Lond B Biol Sci 276(1663):1865–1873

    Article  Google Scholar 

  • Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to Xppaut for researchers and students. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Frances DN, McCauley SJ (2018) Warming drives higher rates of prey consumption and increases rates of intraguild predation. Oecologia 187(3):585–569

    Article  Google Scholar 

  • Garay-Narvaez L, Ramos-Jiliberto R (2009) Induced defenses within food webs: the role of community trade-offs, delayed responses, and defense specificity. Ecol Complex 6(3):383–391

    Article  Google Scholar 

  • Guill C, Drossel B (2008) Emergence of complexity in evolving niche-model food webs. J Theor Biol 251(1):108–120

    Article  MathSciNet  Google Scholar 

  • Hik DS (1995) Does risk of predation influence population dynamics? evidence from cyclic decline of snowshoe hares. Wildl Res 22(1):115–129

    Article  Google Scholar 

  • Holt RD, Huxel GR (2007) Alternative prey and the dynamics of intraguild predation: theoretical perspectives. Ecology 88(11):2706–2712

    Article  Google Scholar 

  • Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149(4):745–764

    Article  Google Scholar 

  • Kang Y, Wedekin L (2013) Dynamics of a intraguild predation model with generalist or specialist predator. J Math Biol 67(5):1227–1259

    Article  MathSciNet  Google Scholar 

  • Kondoh M (2017) Anti-predator defence and the complexity-stability relationship of food webs. Proc R Soc 274:1617–1624

    Article  Google Scholar 

  • Kratina P, Hammill E, Anholt B (2010) Stronger inducible defences enhance persistence of intraguild prey. J Anim Ecol 79:993–999

    Article  Google Scholar 

  • Křivan V, Diehl S (2005) Adaptive omnivory and species coexistence in tri-trophic food webs. Theor Popul Biol 67(2):85–99

    Article  Google Scholar 

  • Lutscher F, Lewis MA, McCauley E (2006) Effects of heterogeneity on spread and persistence in rivers. Bull Math Biol 68(8):2129–2160

    Article  MathSciNet  Google Scholar 

  • Maron JL, Vilà M (2001) When do herbivores affect plant invasion? evidence for the natural enemies and biotic resistance hypotheses. Oikos 95(3):361–373

    Article  Google Scholar 

  • Moehrenschlager A, List R, Macdonald DW (2007) Escaping intraguild predation: Mexican kit foxes survive while coyotes and golden eagles kill canadian swift foxes. J Mammal 88(4):1029–1039

    Article  Google Scholar 

  • Myers RF (1999) Micronesian reef fishes: a field guide for divers and aquarists. Coral Graphics Barrigada, Guam

    Google Scholar 

  • Mylius SD, Klumpers K, de Roos AM, Persson L (2001) Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am Nat 158(3):259–276

    Article  Google Scholar 

  • Polis GA, Myers CA (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Evol Syst 20:297–330

    Article  Google Scholar 

  • Raak-van den Berg CL, De Lange HJ, Van Lenteren JC (2012) Intraguild predation behaviour of ladybirds in semi-field experiments explains invasion success of Harmonia axyridis. PLoS ONE 7(7):e40681

    Article  Google Scholar 

  • Ramos-Jiliberto R, Mena-Lorca J, Flores JD, Morales-Álvarez W (2008) Role of inducible defenses in the stability of a tritrophic system. Ecol Complex 5(2):183–192

    Article  Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97(895):209–223

    Article  Google Scholar 

  • Sato S, Dixon AFG (2004) Effect of intraguild predation on the survival and development of three species of aphidophagous ladybirds: consequences for invasive species. Agric For Entomol 6(1):21–24

    Article  Google Scholar 

  • Seiter M, Schausberger P (2015) Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites. Sci Rep 5:15046

    Article  Google Scholar 

  • Sentis A, Hemptinne JL, Brodeur J (2013) How functional response and productivity modulate intraguild predation. Ecosphere 4(4):1–14

    Article  Google Scholar 

  • Urbani P, Ramos-Jiliberto R (2010) Adaptive prey behavior and the dynamics of intraguild predation systems. Ecol Model 221:2628–2633

    Article  Google Scholar 

  • Van der Stap I, Vos M, Mooij WM (2007) Inducible defenses and rotifer food chain dynamics. Hydrobiologia 593(1):103–110

    Article  Google Scholar 

  • Verdy A, Amarasekare P (2010) Alternative stable states in communities with intraguild predation. J Theor Biol 262(1):116–128

    Article  MathSciNet  Google Scholar 

  • Verschoor AM, Vos M, van der Stap I (2004) Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecol Lett 7:1143–1148

    Article  Google Scholar 

  • Visser AW, Mariani P, Pigolotti S (2012) Adaptive behaviour, tri-trophic food-web stability and damping of chaos. J R Soc Interface 9(71):1373–1380

    Article  Google Scholar 

  • Wainwright P, Turingan R, Brainerd EL (1995) Functional morphology of pufferfish inflation: mechanism of the buccal pump. Copeia 614–625

    Article  Google Scholar 

  • Walzer A, Schausberger P (2013) Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk. Exp Appl Acarol 60(1):95–115

    Article  Google Scholar 

  • Zhang G, Wang X (2017) Extinction and coexistence of species for a diffusive intraguild predation model with b-d functional response. Discret Contin Dyn Syst Ser B 23(9):3755–3786

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is pleased to acknowledge funding and organization of the VII Southern-Summer School on Mathematical Biology in Brazil by ICTP-SAIFR/IFT-UNESP and R.A. Kraenkel. Early stages of this project were inspired by and benefited a lot from discussions with R.M. Coutinho during this time. Furthermore, the author would like to thank H. Malchow for helpful discussions and proofreading and F.M. Hilker for valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Köhnke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Jacobian Matrix for the Model Without Adaptation

The Jacobian of the system without adaptation is given by

$$\begin{aligned} J = \begin{pmatrix} \alpha _{11} &{}\quad \alpha _{12} &{}\quad \alpha _{13}\\ \alpha _{21} &{}\quad \alpha _{22} &{}\quad \alpha _{23}\\ \alpha _{31} &{}\quad \alpha _{32} &{}\quad \alpha _{33} \end{pmatrix} \end{aligned}$$
(A.1)

with the entries

$$\begin{aligned} a_{11}&= r-\frac{2rR}{K}-\frac{\alpha _{ NR }N}{(1+\alpha _{ NR }H_{ NR }R)^2}-\frac{\alpha _{ PR }(P+\alpha _{ PN }H_{ PN }NP)}{(1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PR }R)^2} \end{aligned}$$
(A.2a)
$$\begin{aligned} a_{12}&= R\left( \frac{\alpha _{ PN }\alpha _{ PR }H_{ PN }P}{(1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PR }R)^2}-\frac{\alpha _{ NR }}{1+\alpha _{ NR }H_{ NR }R}\right) \end{aligned}$$
(A.2b)
$$\begin{aligned} a_{13}&= -\frac{\alpha _{ PR }R}{1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PR }R} \end{aligned}$$
(A.2c)
$$\begin{aligned} a_{21}&= \frac{\alpha _{ NR }\epsilon _{ NR }N}{(1+\alpha _{ NR }H_{ NR }R)^2}+\frac{\alpha _{ PN }\alpha _{ PR }H_{ PR }NP}{(1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PR }R)^2} \end{aligned}$$
(A.2d)
$$\begin{aligned} a_{22}&= \frac{\alpha _{ NR }\epsilon _{ NR }R}{1+\alpha _{ NR }H_{ NR }R}-m_N-\frac{P(\alpha _{ PN }+\alpha _{ PN }\alpha _{ PR }H_{ PR }R)}{(1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PR }R)^2} \end{aligned}$$
(A.2e)
$$\begin{aligned} a_{23}&= -\frac{\alpha _{ PN }N}{1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PR }R} \end{aligned}$$
(A.2f)
$$\begin{aligned} a_{31}&= \frac{\alpha _{ PR }(\epsilon _{ PR }+\alpha _{ PN }\epsilon _{ PR }H_{ PN }N-\alpha _{ PN }\epsilon _{ PN }H_{ PR }N)P}{(1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PN }N+\alpha _{ PR }H_{ PR }R)^2} \end{aligned}$$
(A.2g)
$$\begin{aligned} a_{32}&= \frac{\alpha _{ PN }P(\epsilon _{ PN }-\alpha _{ PR }\epsilon _{ PR }H_{ PN }R+\alpha _{ PR }\epsilon _{ PN }H_{ PR }R)}{(1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PR }R)^2} \end{aligned}$$
(A.2h)
$$\begin{aligned} a_{33}&= \frac{\alpha _{ PN }\epsilon _{ PN }N+\alpha _{ PR }\epsilon _{ PR }R}{1+\alpha _{ PN }H_{ PN }N+\alpha _{ PR }H_{ PR }R}-m_P. \end{aligned}$$
(A.2i)

Appendix B: Nullclines of the Model with Adaptation

The nullcline for the model with adaptation can be written as

$$\begin{aligned} P&= \frac{n_b}{d_b} \end{aligned}$$

with

$$\begin{aligned} n_b =&2bm_N(\alpha +b+\alpha \alpha _{ PN }H_{ PN }N\nonumber \\&+\,\alpha _{ PN }H_{ PN }bN+\alpha _{ PN }H_{ PN }I_\mathrm{{max}}bN+\alpha _{ PR }(a+b)H_{ PR }R)^2 \end{aligned}$$
(B.1a)

and

$$\begin{aligned} d_b&= \alpha \alpha _{ PN }^2H_{ PN }I_\mathrm{{max}}N;\\ P&= \frac{n_R}{d_R} \end{aligned}$$

with

$$\begin{aligned} n_R =&-\,(\alpha +b+\alpha \alpha _{ PN }H_{ PN }N+\alpha _{ PN }H_{ PN }bN+\alpha _{ PN }H_{ PN }I_\mathrm{{max}}bN\nonumber \\&+\,\alpha _{ PR }H_{ PR }(\alpha +b)R)(\alpha _{ NR }KN-(K-R)(1+\alpha _{ NR }H_{ NR }R)r) \end{aligned}$$
(B.1b)

and

$$\begin{aligned} d_R&= \alpha _{ PR }K(\alpha +b)(1+\alpha _{ NR }H_{ NR }R);\\ N&= \frac{n_N}{d_N} \end{aligned}$$

with

$$\begin{aligned} n_N =&-\,(a+b)((1+b^2)m_N(1+\alpha _{ NR }H_{ NR }R)(1+\alpha _{ PR }H_{ PR }R)\\&+\,\alpha _{ PN }(P+\alpha _{ NR }H_{ NR }PR))\\&-\,\alpha _{ NR }\epsilon _{ NR }R(1+\alpha _{ PR }H_{ PR }R)) \end{aligned}$$

and

$$\begin{aligned} d_N&= \alpha _{ PN }H_{ PN }(\alpha +b+bI_\mathrm{{max}})(-\alpha _{ NR }\epsilon _{ NR }R+m_N(1+b^2)(1+\alpha _{ NR }H_{ NR }R)); \end{aligned}$$
(B.1c)
$$\begin{aligned} N&= \frac{n_P}{d_P} \end{aligned}$$

with

$$\begin{aligned} n_P&= (\alpha +b)(m_P-\alpha _{ PR }\epsilon _{ PR }R+\alpha _{ PR }H_{ PR }m_PR) \end{aligned}$$
(B.1d)

and

$$\begin{aligned} d_P&= \alpha _{ PN }\epsilon _{ PN }(\alpha +b)-\alpha _{ PN }H_{ PN }m_P(\alpha +b+I_\mathrm{{max}}b); \end{aligned}$$

for the differential equations modeling the dynamics of the adaptation state, the resource, the IGprey and the IGpredator, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhnke, M.C. Invasion Dynamics in an Intraguild Predation System with Predator-Induced Defense. Bull Math Biol 81, 3754–3777 (2019). https://doi.org/10.1007/s11538-019-00655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00655-4

Keywords

Navigation