Skip to main content
Log in

Conductance-Based Refractory Density Approach for a Population of Bursting Neurons

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The conductance-based refractory density (CBRD) approach is a parsimonious mathematical–computational framework for modelling interacting populations of regular spiking neurons, which, however, has not been yet extended for a population of bursting neurons. The canonical CBRD method allows to describe the firing activity of a statistical ensemble of uncoupled Hodgkin–Huxley-like neurons (differentiated by noise) and has demonstrated its validity against experimental data. The present manuscript generalises the CBRD for a population of bursting neurons; however, in this pilot computational study, we consider the simplest setting in which each individual neuron is governed by a piecewise linear bursting dynamics. The resulting population model makes use of slow–fast analysis, which leads to a novel methodology that combines CBRD with the theory of multiple timescale dynamics. The main prospect is that it opens novel avenues for mathematical explorations, as well as, the derivation of more sophisticated population activity from Hodgkin–Huxley-like bursting neurons, which will allow to capture the activity of synchronised bursting activity in hyper-excitable brain states (e.g. onset of epilepsy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amari SI (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27(2):77–87

    Article  MathSciNet  MATH  Google Scholar 

  • Apfaltrer F, Ly C, Tranchina D (2006) Population density methods for stochastic neurons with realistic synaptic kinetics: firing rate dynamics and fast computational methods. Network 17(4):373–418

    Article  Google Scholar 

  • Avitabile D, Desroches M, Knobloch E (2016) Spatiotemporal canards in neural field equations. Phys Rev E 95(4):042205

    Article  MathSciNet  Google Scholar 

  • beim Graben P, Rodrigues S (2013) A biophysical observation model for field potentials of networks of leaky integrate-and-fire neurons. Front Comput Neurosci 6:100

    Article  Google Scholar 

  • Berglund N, Gentz B (2006) Noise-induced phenomena in slow-fast dynamical systems: a sample-paths approach. Springer, Berlin

    MATH  Google Scholar 

  • Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA (2015) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex 16(9):1296–1313

    Article  Google Scholar 

  • Brunel N, Hakim H (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11(7):1621–1671

    Article  Google Scholar 

  • Brunel N, Chance FS, Fourcaud N, Abbott LF (2001) Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys Rev Lett 86(10):2186–2189

    Article  Google Scholar 

  • Cañizo JA, Yoldaş H (2018) Asymptotic behaviour of neuron population models structured by elapsed-time. arXiv:1803.07062

  • Casti ARR, Omurtag A, Sornborger A, Kaplan E, Knight B, Victor J, Sirovich L (2002) A population study of integrate-and-fire-or-burst neurons. Neural Comput 14:957–986

    Article  MATH  Google Scholar 

  • Chevallier J, Cáceres MJ, Doumic M, Reynaud-Bouret P (2015) Microscopic approach of a time elapsed neural model. Math Models Methods Appl Sci 25(14):2669–2719

    Article  MathSciNet  MATH  Google Scholar 

  • Chizhov AV (2014) Conductance-based refractory density model of primary visual cortex. J Comput Neurosci 36(2):297–319

    Article  MathSciNet  MATH  Google Scholar 

  • Chizhov AV (2017) Conductance-based refractory density approach: comparison with experimental data and generalization to lognormal distribution of input current. Biol Cybern 111(5–6):353–364

    Article  MathSciNet  MATH  Google Scholar 

  • Chizhov AV, Graham LJ (2007) Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Phys Rev E 75:011924

    Article  MathSciNet  Google Scholar 

  • Chizhov AV, Graham LJ (2008) Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Phys Rev E 77:011910

    Article  Google Scholar 

  • Chizhov AV, Graham LJ, Turbin AA (2006) Simulation of neural population dynamics with a refractory density approach and a conductance-based threshold neuron model. Neurocomputing 70:252–262

    Article  Google Scholar 

  • Chizhov AV, Rodrigues S, Terry JR (2007) A comparative analysis of a detailed neural population model and a mean-field EEG model. Phys Lett A 369:31–36

    Article  Google Scholar 

  • Chizhov AV, Amakhin DV, Zaitsev AV (2017) Computational model of interictal discharges triggered by interneurons. PLoS ONE 12(10):e0185752

    Article  Google Scholar 

  • Chizhov AV, Amakhin DV, Zaitsev AV (2019a) Spatial propagation of interictal discharges along the cortex. Biochem Biophys Res Commun 508:1245–1251

    Article  Google Scholar 

  • Chizhov AV, Amakhin DV, Zaitsev AV (2019b) Mathematical model of Na–K–Cl homeostasis in ictal and interictal discharges. PLoS ONE 14(3):e0213904

    Article  Google Scholar 

  • Coombes S, Thül R, Wedgwood KCA (2012) Nonsmooth dynamics in spiking neuron models. Physics D 241:2042–2057

    Article  MathSciNet  Google Scholar 

  • Desroches M, Kaper TJ, Krupa M (2013) Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos 23(4):046106

    Article  MathSciNet  MATH  Google Scholar 

  • Desroches M, Guillamon A, Ponce E, Prohens E, Rodrigues S, Teruel AE (2016) Canards, folded nodes, and mixed-mode oscillations in piecewise-linear slow-fast systems. SIAM Rev 58(4):653–691

    Article  MathSciNet  MATH  Google Scholar 

  • Dumont G, Payeur A, Longtin A (2017) A stochastic-field description of finite-size spiking neural networks. PLoS Comput Biol 13(8):e1005691

    Article  Google Scholar 

  • Eggert J, van Hemmen JL (2001) Modeling neuronal assemblies: theory and implementation. Neural Comput 13:1923–1974

    Article  MATH  Google Scholar 

  • Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31(1):53–98

    Article  MathSciNet  MATH  Google Scholar 

  • Fernandez FR, White JA (2010) Gain control in CA1 pyramidal cells using changes in somatic conductance. J Neurosci 30(1):230–241

    Article  Google Scholar 

  • Freeman W (1972) Waves, pulses, and the theory of neural masses. Prog Theor Biol 2(1):1–10

    Google Scholar 

  • Freeman W (1975) Mass action in the nervous system. Academic Press, Cambridge

    Google Scholar 

  • Fröhlich F, Bazhenov M (2006) Coexistence of tonic firing and bursting in cortical neurons. Phys Rev E 74:031922

    Article  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press

  • Gerstner W, Naud R (2009) How good are neuron models? Science 326:379–326

    Article  Google Scholar 

  • Izhikevich EM (2000) Neuronal excitability, spiking and bursting. Int J Bifurc Chaos 10(6):1171–1266

    Article  MathSciNet  MATH  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  MathSciNet  Google Scholar 

  • Jensen MS, Yaari Y (1997) Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol 77(3):1224–1233

    Article  Google Scholar 

  • Jones CKRT (1995) Geometric singular perturbation theory. In: Arnold L, Jones CKRT, Mischaikow K, Raugel G (eds) Dynamical systems, lecture notes in mathematics, vol 1609. Springer, Berlin, pp 44–118

    Google Scholar 

  • Knight B (1972) Dynamics of encoding in a population of neurons. J Gener Physiol 59:734–766

    Article  Google Scholar 

  • Knight BW, Manin D, Sirovich L (1996) Dynamical models of interacting neuron populations. In: Gerf EC (ed) Symposium on robotics and cybernetics: computational engineering in systems applications. Cite Scientifique, Lille

    Google Scholar 

  • Knight BW, Omurtag A, Sirovich L (2000) The approach of a neuron population firing rate to a new equilibrium: an exact theoretical result. Neural Comput 12:1045–1055

    Article  Google Scholar 

  • Ly C, Doiron B (2009) Divisive gain modulation with dynamic stimuli in integrate-and-fire neurons. PLoS Comput Biol 5(4):e1000365

    Article  MathSciNet  Google Scholar 

  • Ly C, Tranchina D (2007) Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural comput 19(8):2032–2092

    Article  MathSciNet  MATH  Google Scholar 

  • Ly C, Tranchina D (2009) Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach. Neural Comput 21:360–396

    Article  MathSciNet  MATH  Google Scholar 

  • Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR (2009) Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos Trans R Soc A 367(1891):1145–1161

    Article  MathSciNet  MATH  Google Scholar 

  • Montbrió E, Pazó D, Roxin A (2015) Macroscopic description for networks of spiking neurons. Phys Rev X 5:021028

    Google Scholar 

  • Nykamp DQ, Tranchina D (2000a) A population density approach that facilitates large-scale modeling of neural networks: analysis and an application to orientation tuning. J Comput Neurosci 8:19–50

    Article  MATH  Google Scholar 

  • Nykamp D, Tranchina D (2000b) A population density approach that facilitates large-scale modeling of neural networks: analysis and application to orientation tuning. J Comput Neurosci 8:19–50

    Article  MATH  Google Scholar 

  • Ott E, Antonsen TM (2008) Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18(3):037113

    Article  MathSciNet  MATH  Google Scholar 

  • Perthame B, Tumuluri SK (2008) Selected topics in cancer modeling. In: Bellomo N, de Angelis E (eds) Nonlinear renewal equations. Springer, Berlin

    Chapter  Google Scholar 

  • Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: International congress of mathematicians, Berkeley, California, USA, August 3-11, 1986, volume II, pp 1578–1593. American Mathematical Society

  • Rodrigues S, Barton D, Szalai R, Benjamin O, Richardson MP, Terry JR (2009) Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J Comput Neurosci 27(3):507–526

    Article  MathSciNet  Google Scholar 

  • Schwalger T, Deger M, Gerstner W (2017) Towards a theory of cortical columns: from spiking neurons to interacting neural populations of finite size. PLoS Comput Biol 13(4):e1005507

    Article  Google Scholar 

  • Smirnova EY, Zaitsev AV, Kim KKh, Chizhov AV (2015) The domain of neuronal firing on a plane of input current and conductance. J Comput Neurosci 39(2):217–33

    Article  MathSciNet  MATH  Google Scholar 

  • Tchumatchenko T, Malyshev A, Wolf F, Volgushev M (2011) Ultrafast population encoding by cortical neurons. J Neurosci 31(34):12171–12179

    Article  Google Scholar 

  • Terman D (1991) Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J Appl Math 51(5):1418–1450

    Article  MathSciNet  MATH  Google Scholar 

  • Ventriglia F (1974) Kinetic approach to neural systems: I. Bull Math Biol 36(5–6):535–544

    Article  MATH  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    Article  Google Scholar 

  • Yu Y, Shu Y, McCormick DA (2008) Cortical action potential back propagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28(29):7260–7272

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Basque Government through the BERC 2018-2021 programme and by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through Project RTI2018-093860-B-C21 funded by (AEI/FEDER, UE) and acronym “MathNEURO”. SR would further like to acknowledge the support of Ikerbasque (The Basque Foundation for Science). Moreover, the research of AC was supported by the Russian Science Foundation Grant (Project 16-15-10201). The research of AG was supported by the Spanish Grant MINECO-FEDER-UE MTM-2015-71509-C2-2-R and the Catalan Grant Number 2017SGR1049. Finally, SR, FC and MD would like to acknowledge the support of Inria through the associated team project NeuroTransSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafim Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhov, A., Campillo, F., Desroches, M. et al. Conductance-Based Refractory Density Approach for a Population of Bursting Neurons. Bull Math Biol 81, 4124–4143 (2019). https://doi.org/10.1007/s11538-019-00643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00643-8

Keywords

Navigation