Skip to main content
Log in

Dynamics of Bone Cell Interactions and Differential Responses to PTH and Antibody-Based Therapies

  • Special Issue: Mathematics to Support Drug Discovery and Development
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose a mathematical model describing the dynamics of osteoblasts and osteoclasts in bone remodeling. The goal of this work is to develop an integrated modeling framework for bone remodeling and bone cell signaling dynamics that could be used to explore qualitatively combination treatments for osteoporosis in humans. The model has been calibrated using 57 checks from the literature. Specific global optimization methods based on qualitative objectives have been developed to perform the model calibration. We also added pharmacokinetics representations of three drugs to the model, which are teriparatide (PTH(1–34)), denosumab (a RANKL antibody) and romosozumab (a sclerostin antibody), achieving excellent goodness-of-fit of human clinical data. The model reproduces the paradoxical effects of PTH on the bone mass, where continuous administration of PTH results in bone loss but intermittent administration of PTH leads to bone gain, thus proposing an explanation of this phenomenon. We used the model to simulate different categories of osteoporosis. The main attributes of each disease are qualitatively well captured by the model, for example changes in bone turnover in the disease states. We explored dosing regimens for each disease based on the combination of denosumab and romosozumab, identifying adequate ratios and doses of both drugs for subpopulations of patients in function of categories of osteoporosis and the degree of severity of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Allen RJ, Rieger TR, Musante CJ (2016) Efficient generation and selection of virtual populations in quantitative systems pharmacology models. CPT Pharmacomet Syst Pharmacol 5:140–146. https://doi.org/10.1002/psp4.12063

    Article  Google Scholar 

  • Aloia JF, Feuerman M, Yeh JK (2006) Reference range for serum parathyroid hormone. Endocr Pract 12:137–144. https://doi.org/10.4158/EP.12.2.137

    Article  Google Scholar 

  • Amgen (2009) Romosozumab nonproprietary drug name

  • Amgen (2010) Prolia® (denosumab)

  • Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:28. https://doi.org/10.1186/1745-6150-5-28

    Article  Google Scholar 

  • Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, Holmes GB, Dunstan CR, DePaoli AM (2004) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 19:1059–1066. https://doi.org/10.1359/JBMR.040305

    Article  Google Scholar 

  • Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, Weinstein RS, O’Brien CA, Manolagas SC, Jilka RL (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 278:50259–50272

    Article  Google Scholar 

  • Bellido T, Ali A, Gubrij I, Plotkin L, Fu Q, O’brien C, Manolagas S, Jilka R (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583

    Article  Google Scholar 

  • Bergwitz C, Jüppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104. https://doi.org/10.1146/annurev.med.051308.111339

    Article  Google Scholar 

  • Berkhout J, Stone JA, Verhamme KM, Stricker BH, Sturkenboom MC, Danhof M, Post TM (2015) Application of a systems pharmacology-based placebo population model to analyze long-term data of postmenopausal osteoporosis. CPT Pharmacomet Syst Pharmacol 4:516–526. https://doi.org/10.1002/psp4.12006

    Article  Google Scholar 

  • Block GA, Bone HG, Fang L, Lee E, Padhi D (2012) A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res 27:1471–1479. https://doi.org/10.1002/jbmr.1613

    Article  Google Scholar 

  • Bone HG, Bolognese MA, Yuen CK, Kendler DL, Wang H, Liu Y, San Martin J (2008) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab 93:2149–2157. https://doi.org/10.1210/jc.2007-2814

    Article  Google Scholar 

  • Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang Y-C, Grazette L, San Martin J, Gallagher JC (2011) Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab 96:972–980. https://doi.org/10.1210/jc.2010-1502

    Article  Google Scholar 

  • Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615

    Article  Google Scholar 

  • Canalis E, Giustina A, Bilezikian JP (2007a) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916. https://doi.org/10.1056/NEJMra067395

    Article  Google Scholar 

  • Canalis E, Mazziotti G, Giustina A, Bilezikian J (2007b) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328

    Article  Google Scholar 

  • Cho C, Greller L, Tobin F (2000) Parathyroid hormone receptor and osteoporosis—towards target validation by mathematical modeling. Bioinform Math Biol Bone Cartil Biol—SmithKline Beecham Pharmaceuticals R&D, King of Prussia, PA, USA

  • Chu NN, Li XN, Chen WL, Xu HR (2007) Pharmacokinetics and safety of recombinant human parathyroid hormone (1–34) (teriparatide) after single ascending doses in Chinese healthy volunteers. Pharmazie 62:869–871

    Google Scholar 

  • Clausen JO (2009) Comment on Kanis et al.: “European guidance for the diagnosis and management of osteoporosis in postmenopausal women”. Osteoporos Int 20:1631. https://doi.org/10.1007/s00198-008-0812-y

    Article  Google Scholar 

  • Daddona PE, Matriano JA, Mandema J, Maa YF (2011) Parathyroid hormone (1–34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm Res 28:159–165. https://doi.org/10.1007/s11095-010-0192-9

    Article  Google Scholar 

  • Daoussis D, Andonopoulos AP (2011) The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? Semin Arthritis Rheum 41:170–177. https://doi.org/10.1016/j.semarthrit.2011.01.006

    Article  Google Scholar 

  • Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R (2006) Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171 V to modulate Wnt activity. J Bone Miner Res 21:1738–1749

    Article  Google Scholar 

  • Eudy RJ, Gastonguay MR, Baron KT, Riggs MM (2015) Connecting the dots: linking osteocyte activity and therapeutic modulation of sclerostin by extending a multiscale systems model. CPT Pharmacomet Syst Pharmacol 4:527–536. https://doi.org/10.1002/psp4.12013

    Article  Google Scholar 

  • Fermor B, Skerry TM (1995) PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats. J Bone Miner Res 10:1935–1943

    Article  Google Scholar 

  • Fraher LJ, Klein K, Marier R, Freeman D, Hendy GN, Goltzman D, Hodsman AB (1995) Comparison of the pharmacokinetics of parenteral parathyroid hormone-(1–34) [PTH-(1–34)] and PTH-related peptide-(1–34) in healthy young humans. J Clin Endocrinol Metab 80:60–64

    Google Scholar 

  • Fromigue O, Modrowski D, Marie PJ (2004) Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr Pharm Des 10:2593–2603

    Article  Google Scholar 

  • Furuya M, Kikuta J, Fujimori S, Seno S, Maeda H, Shirazaki M, Uenaka M, Mizuno H, Iwamoto Y, Morimoto A, Hashimoto K, Ito T, Isogai Y, Kashii M, Kaito T, Ohba S, Chung UI, Lichtler AC, Kikuchi K, Matsuda H, Yoshikawa H, Ishii M (2018) Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat Commun 9:300. https://doi.org/10.1038/s41467-017-02541-w

    Article  Google Scholar 

  • Gadkar K, Budha N, Baruch A, Davis JD, Fielder P, Ramanujan S (2014) A mechanistic systems pharmacology model for prediction of LDL cholesterol lowering by PCSK9 antagonism in human dyslipidemic populations. CPT Pharmacomet Syst Pharmacol 3:e149. https://doi.org/10.1038/psp.2014.47

    Article  Google Scholar 

  • Gibiansky L, Sutjandra L, Doshi S, Zheng J, Sohn W, Peterson MC, Jang GR, Chow AT, Perez-Ruixo JJ (2012) Population pharmacokinetic analysis of denosumab in patients with bone metastases from solid tumours. Clin Pharmacokinet 51:247–260. https://doi.org/10.2165/11598090-000000000-00000

    Article  Google Scholar 

  • Gogakos AI, Cheung MS, Bassett JD, Williams GR (2009) Bone signaling pathways and treatment of osteoporosis. Expert Rev Endocrinol Metab 4:639–650

    Article  Google Scholar 

  • Goldring SR, Goldring MB (2007) Eating bone or adding it: the Wnt pathway decides. Nat Med 13:133–134

    Article  Google Scholar 

  • Graham JM, Ayati BP, Holstein SA, Martin JA (2013) The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS ONE 8:e63884. https://doi.org/10.1371/journal.pone.0063884

    Article  Google Scholar 

  • Hammerle SP, Mindeholm L, Launonen A, Kiese B, Loeffler R, Harfst E, Azria M, Arnold M, John MR (2012) The single dose pharmacokinetic profile of a novel oral human parathyroid hormone formulation in healthy postmenopausal women. Bone 50:965–973. https://doi.org/10.1016/j.bone.2012.01.009

    Article  Google Scholar 

  • Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281. https://doi.org/10.1056/NEJMra070553

    Article  Google Scholar 

  • Ishibashi Y, Yoshida H, Mizuta E, Fukuda T (1993) Fragmentation of parathyroid hormone, a 9.4 kDa polypeptide, in liquid secondary ion mass spectrometry. Biol Mass Spectrom 22:98–100. https://doi.org/10.1002/bms.1200220113

    Article  Google Scholar 

  • Jabbar S, Drury J, Fordham JN, Datta HK, Francis RM, Tuck SP (2011) Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J Clin Pathol 64:354–357

    Article  Google Scholar 

  • Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446

    Article  Google Scholar 

  • Kassem M, Marie PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10:191–197. https://doi.org/10.1111/j.1474-9726.2011.00669.x

    Article  Google Scholar 

  • Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148–158

    Article  Google Scholar 

  • Kendler DL, Roux C, Benhamou CL, Brown JP, Lillestol M, Siddhanti S, Man H-S, Martin JS, Bone HG (2010) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res 25:72–81. https://doi.org/10.1359/jbmr.090716

    Article  Google Scholar 

  • Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118:421–428. https://doi.org/10.1172/JCI33612

    Article  Google Scholar 

  • Komarova SV (2005) Mathematical model of paracrine interactions between osteoclasts and osteoblasts predicts anabolic action of parathyroid hormone on bone. Endocrinology 146:3589–3595

    Article  Google Scholar 

  • Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30:3071–3085. https://doi.org/10.1128/MCB.01428-09

    Article  Google Scholar 

  • Kumagai Y, Hasunuma T, Padhi D (2011) A randomized, double-blind, placebo-controlled, single-dose study to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of denosumab administered subcutaneously to postmenopausal Japanese women. Bone 49:1101–1107. https://doi.org/10.1016/j.bone.2011.08.007

    Article  Google Scholar 

  • Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, San Martin J, Dansey R (2012) Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11:401–419. https://doi.org/10.1038/nrd3705

    Article  Google Scholar 

  • Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229:293–309. https://doi.org/10.1016/j.jtbi.2004.03.023

    Article  MathSciNet  Google Scholar 

  • Lewiecki EM (2011) Sclerostin monoclonal antibody therapy with AMG 785: a potential treatment for osteoporosis. Expert Opin Biol Ther 11:117–127

    Article  Google Scholar 

  • Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887

    Article  Google Scholar 

  • Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588. https://doi.org/10.1359/jbmr.081206

    Article  Google Scholar 

  • Lindsay R, Nieves J, Henneman E, Shen V, Cosman F (1993) Subcutaneous administration of the amino-terminal fragment of human parathyroid hormone-(1–34): kinetics and biochemical response in estrogenized osteoporotic patients. J Clin Endocrinol Metab 77:1535–1539

    Google Scholar 

  • Liu C, Walter TS, Huang P, Zhang S, Zhu X, Wu Y, Wedderburn LR, Tang P, Owens RJ, Stuart DI (2010) Structural and functional insights of RANKL–RANK interaction and signaling. J Immunol 184:6910–6919

    Article  Google Scholar 

  • Lorentzon M, Cummings SR (2015) Osteoporosis: the evolution of a diagnosis. J Intern Med 277:650–661. https://doi.org/10.1111/joim.12369

    Article  Google Scholar 

  • Marathe A, Peterson MC, Mager DE (2008) Integrated cellular bone homeostasis model for denosumab pharmacodynamics in multiple myeloma patients. J Pharmacol Exp Ther 326:555–562

    Article  Google Scholar 

  • Marathe DD, Marathe A, Mager DE (2011) Integrated model for denosumab and ibandronate pharmacodynamics in postmenopausal women. Biopharm Drug Dispos 32:471–481

    Article  Google Scholar 

  • Mazziotti G, Angeli A, Bilezikian JP, Canalis E, Giustina A (2006) Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab 17:144–149. https://doi.org/10.1016/j.tem.2006.03.009

    Article  Google Scholar 

  • Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell 3:379–389. https://doi.org/10.1111/j.1474-9728.2004.00127.x

    Article  Google Scholar 

  • Mosekilde L (2008) Primary hyperparathyroidism and the skeleton. Clin Endocrinol 69:1–19

    Article  Google Scholar 

  • O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841. https://doi.org/10.1210/en.2003-0990

    Article  Google Scholar 

  • Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26. https://doi.org/10.1002/jbmr.173

    Article  Google Scholar 

  • Paszty C, Turner CH, Robinson MK (2010) Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 25:1897–1904. https://doi.org/10.1002/jbmr.161

    Article  Google Scholar 

  • Paton DM (2014) Romosozumab. Humanized anti-sclerostin monoclonal antibody, treatment of osteoporosis. Drugs of the Future, 553–556

  • Peterson MC, Riggs MM (2010) A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46:49–63. https://doi.org/10.1016/j.bone.2009.08.053

    Article  Google Scholar 

  • Peterson M, Riggs M (2012) Predicting nonlinear changes in bone mineral density over time using a multiscale systems pharmacology model. CPT: Pharmacomet Syst Pharmacol 1:1–8. https://doi.org/10.1038/psp.2012.15

    Google Scholar 

  • Pfutzner A, Flacke F, Pohl R, Linkie D, Engelbach M, Woods R, Forst T, Beyer J, Steiner SS (2003) Pilot study with technosphere/PTH(1–34)–a new approach for effective pulmonary delivery of parathyroid hormone (1–34). Horm Metab Res 35:319–323. https://doi.org/10.1055/s-2003-41309

    Article  Google Scholar 

  • Pietschmann P, Rauner M, Sipos W, Kerschan-Schindl K (2009) Osteoporosis: an age-related and gender-specific disease-a mini-review. Gerontology 55:3

    Article  Google Scholar 

  • Pivonka P, Komarova SV (2010) Mathematical modeling in bone biology: from intracellular signaling to tissue mechanics. Bone 47:181–189. https://doi.org/10.1016/j.bone.2010.04.601

    Article  Google Scholar 

  • Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43:249–263. https://doi.org/10.1016/j.bone.2008.03.025

    Article  Google Scholar 

  • Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR (2010) Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. J Theor Biol 262:306–316. https://doi.org/10.1016/j.jtbi.2009.09.021

    Article  MATH  Google Scholar 

  • Post TM, Cremers SC, Kerbusch T, Danhof M (2010) Bone physiology, disease and treatment: towards disease system analysis in osteoporosis. Clin Pharmacokinet 49:89–118. https://doi.org/10.2165/11318150-000000000-00000

    Article  Google Scholar 

  • Post TM, Schmidt S, Peletier LA, de Greef R, Kerbusch T, Danhof M (2013) Application of a mechanism-based disease systems model for osteoporosis to clinical data. J Pharmacokinet Pharmacodyn 40:143–156. https://doi.org/10.1007/s10928-012-9294-9

    Article  Google Scholar 

  • Potter LK, Greller LD, Cho CR, Nuttall ME, Stroup GB, Suva LJ, Tobin FL (2005) Response to continuous and pulsatile PTH dosing: a mathematical model for parathyroid hormone receptor kinetics. Bone 37:159–169

    Article  Google Scholar 

  • Riggs MM, Peterson MC, Gastonguay MR (2012) Multiscale physiology-based modeling of mineral bone disorder in patients with impaired kidney function. J Clin Pharmacol 52:45S–53S

    Article  Google Scholar 

  • Ross DS, Battista C, Cabal A, Mehta K (2012) Dynamics of bone cell signaling and PTH treatments of osteoporosis. Discrete Contin Dyn Syst Ser B 17:2185–2200. https://doi.org/10.3934/dcdsb.2012.17.2185

    Article  MathSciNet  MATH  Google Scholar 

  • Ryser MD, Nigam N, Komarova SV (2009) Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit. J Bone Miner Res 24:860–870. https://doi.org/10.1359/jbmr.081229

    Article  Google Scholar 

  • Scheiner S, Pivonka P, Smith DW, Dunstan CR, Hellmich C (2014) Mathematical modeling of postmenopausal osteoporosis and its treatment by the anti-catabolic drug denosumab. Int J Numer Method Biomed Eng 30:1–27. https://doi.org/10.1002/cnm.2584

    Article  MathSciNet  Google Scholar 

  • Schmidt S, Post TM, Peletier LA, Boroujerdi MA, Danhof M (2011) Coping with time scales in disease systems analysis: application to bone remodeling. J Pharmacokinet Pharmacodyn 38:873–900. https://doi.org/10.1007/s10928-011-9224-2

    Article  Google Scholar 

  • Sigma-Aldrich (2008) Parathyroid hormone fragment 1-34 human. Sigma-Aldrich

  • Sipos W, Pietschmann P, Rauner M, Kerschan-Schindl K, Patsch J (2009) Pathophysiology of osteoporosis. Wien Med Wochenschr 159:230–234. https://doi.org/10.1007/s10354-009-0647-y

    Article  Google Scholar 

  • Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, Chow AT, Perez-Ruixo JJ (2011) Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet 50:793–807. https://doi.org/10.2165/11594240-000000000-00000

    Article  Google Scholar 

  • Tang L, Persky AM, Hochhaus G, Meibohm B (2004) Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93:2184–2204

    Article  Google Scholar 

  • Vacanti C, Pietrzak WS (2008) Musculoskeletal tissue regeneration: biological materials and methods. Springer, Berlin

    Google Scholar 

  • Vasikaran SD (2008) Utility of biochemical markers of bone turnover and bone mineral density in management of osteoporosis. Crit Rev Clin Lab Sci 45:221–258. https://doi.org/10.1080/10408360801949442

    Article  Google Scholar 

  • Wang Y, Lin B (2012) In silico investigations of the anti-catabolic effects of pamidronate and denosumab on multiple myeloma-induced bone disease

  • Wang Y, Pivonka P, Buenzli PR, Smith DW, Dunstan CR (2011) Computational modeling of interactions between multiple myeloma and the bone microenvironment. PLoS ONE 6:e27494. https://doi.org/10.1371/journal.pone.0027494

    Article  Google Scholar 

  • Weinstein R (2001) Glucocorticoid-induced osteoporosis. Rev Endocr Metab Disord 2:65–73. https://doi.org/10.1023/A:1010007108155

    Article  Google Scholar 

  • Yonemori K, Fujiwara Y, Minami H, Kitagawa K, Fujii H, Arai T, Sohn W, Ohkura M, Ohtsu T (2008) Phase 1 trial of denosumab safety, pharmacokinetics, and pharmacodynamics in Japanese women with breast cancer-related bone metastases. Cancer Sci 99:1237–1242. https://doi.org/10.1111/j.1349-7006.2008.00803.x

    Article  Google Scholar 

  • Zhang S, Liu C, Huang P, Zhou S, Ren J, Kitamura Y, Tang P, Bi Z, Gao B (2009) The affinity of human RANK binding to its ligand RANKL. Arch Biochem Biophys 487:49–53

    Article  Google Scholar 

  • Zumsande M, Stiefs D, Siegmund S, Gross T (2011) General analysis of mathematical models for bone remodeling. Bone 48:910–917. https://doi.org/10.1016/j.bone.2010.12.010

    Article  Google Scholar 

Download references

Acknowledgements

VL would like to thank Donna Stone, Kris Poulsen, Arvind Rajpal and Dave Shelton for fruitful discussions during the realization of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Lemaire.

Additional information

In memory of David R. Cox.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemaire, V., Cox, D.R. Dynamics of Bone Cell Interactions and Differential Responses to PTH and Antibody-Based Therapies. Bull Math Biol 81, 3575–3622 (2019). https://doi.org/10.1007/s11538-018-0533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0533-0

Keywords

Navigation