Skip to main content

Advertisement

Log in

A Malaria Transmission Model with Temperature-Dependent Incubation Period

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Malaria is an infectious disease caused by Plasmodium parasites and is transmitted among humans by female Anopheles mosquitoes. Climate factors have significant impact on both mosquito life cycle and parasite development. To consider the temperature sensitivity of the extrinsic incubation period (EIP) of malaria parasites, we formulate a delay differential equations model with a periodic time delay. We derive the basic reproduction ratio \(R_0\) and establish a threshold type result on the global dynamics in terms of \(R_0\), that is, the unique disease-free periodic solution is globally asymptotically stable if \(R_0<1\); and the model system admits a unique positive periodic solution which is globally asymptotically stable if \(R_0>1\). Numerically, we parameterize the model with data from Maputo Province, Mozambique, and simulate the long-term behavior of solutions. The simulation result is consistent with the obtained analytic result. In addition, we find that using the time-averaged EIP may underestimate the basic reproduction ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai S, Li J, Lu J (2012) Mosquito-stage-structured malaria models and their global dynamics. SIAM J Appl Math 72(4):1213–1237

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Ait Dads EH (2012) On the biological interpretation of a definition for the parameter \(R_0\) in periodic population models. J Math Biol 65:601–621

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Guernaoui S (2006) The epidemic threshold of vector-borne diseases with seasonality. J Math Biol 53:421–436

    Article  MathSciNet  MATH  Google Scholar 

  • Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjornstad ON (2013) The effects of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE 8(11):e79276. doi:10.1371/journal.pone.0079276

    Article  Google Scholar 

  • Beier JC (1998) Malaria parasite development in mosquitoes. Annu Rev Entomol 43:519–543

    Article  Google Scholar 

  • Chamchod F, Britton NF (2011) Analysis of a vector-bias model on malaria transmission. Bull Math Biol 73:639–657

    Article  MathSciNet  MATH  Google Scholar 

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70:1272–1296

    Article  MathSciNet  MATH  Google Scholar 

  • Craig MH, Snow RW, le Sueur D (1999) A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15(3):105–111

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in the models for infectious disease in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK, Verduyn Lunel SM (1993) Introduction to functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Hirsch MW, Smith HL, Zhao X-Q (2001) Chain transitivity, attractivity and strong repellors for semidynamical systems. J Dyn Differ Equ 13:107–131

    Article  MathSciNet  MATH  Google Scholar 

  • Inaba H (2012) On a new perspective of the basic reproduction number in heterogeneous environments. J Math Biol 22:113–128

    MathSciNet  MATH  Google Scholar 

  • Kesavan SK, Reddy NP (1985) On the feeding strategy and the mechanics of blood sucking in insects. J Theor Biol 113:781–783

    Article  Google Scholar 

  • Kingsolver JG (1987) Mosquito host choice and the epidemiology of malaria. Am Nat 130:811–827

    Article  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lacroix R, Mukabana WR, Gouagna LC, Koella JC (2005) Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol 3:e298

    Article  Google Scholar 

  • Lou Y, Zhao X-Q (2010) A climate-based malaria transmission model with structured vector population. SIAM J Appl Math 70(6):2023–2044

    Article  MathSciNet  MATH  Google Scholar 

  • Lou Y, Zhao X-Q (2017) A theoretical approach to understanding population dynamics with seasonal developmental durations. J Nonlinear Sci 27:573–603

    Article  MathSciNet  Google Scholar 

  • Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, London

    Google Scholar 

  • McCauley E, Nisbet RM, De Roos AM, Murdoch WW, Gurney WSC (1996) Structured population models of herbivorous zooplankton. Ecol Monogr 66:479–501

    Article  Google Scholar 

  • Molnár PK, Kutz SJ, Hoar BM, Dobson AP (2013) Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecol Lett 16:9–21

    Article  Google Scholar 

  • Ngarakana-Gwasira ET, Bhunu CP, Mashonjowa E (2014) Assessing the impact of temperature on malaria transmission dynamics. Afr Mat 25:1095–1112

    Article  MathSciNet  MATH  Google Scholar 

  • Nisbet RM, Gurney WS (1982) Modelling fluctuating populations. The Blackburn Press, Newark

    MATH  Google Scholar 

  • Nisbet RM, Gurney WS (1983) The systematic formulation of population models for insects with dynamically varying instar duration. Theor Popul Biol 23:114–135

    Article  MathSciNet  MATH  Google Scholar 

  • Omori R, Adams B (2011) Disrupting seasonality to control disease outbreaks: the case of koi herpes virus. J Theor Biol 271:159–165

    Article  MathSciNet  Google Scholar 

  • Posny D, Wang J (2014) Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments. Appl Math Comput 242:473–490

    MathSciNet  MATH  Google Scholar 

  • Rittenhouse MA, Revie CW, Hurford A (2016) A model for sea lice (Lepeophtheirus salmonis) dynamics in a seasonally changing environment. Epidemics 16:8–16

    Article  Google Scholar 

  • Ross R (1911) The prevention of malaria, 2nd edn. Murray, London

    Google Scholar 

  • Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70:188–211

    Article  MathSciNet  MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Walter W (1997) On strongly monotone flows. Ann Polon Math LXVI:269–274

    MathSciNet  MATH  Google Scholar 

  • Wang W, Zhao X-Q (2008) Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Differ Equ 20:699–717

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Zhao X-Q (2017) A periodic vector-bias malaria model with incubation period. SIAM J Appl Math 77:181–201

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Zhao X-Q. A climate-based malaria model with the use of bed nets (submitted)

  • World Health Organisation (2015) Global Malaria Programme, World Malaria Report

  • Wu X, Magpantay FMG, Wu J, Zou X (2015) Stage-structured population systems with temporally periodic delay. Math Meth Appl Sci 38:3464–3481

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York

    Book  MATH  Google Scholar 

  • Zhao X-Q (2017) Basic reproduction ratios for periodic compartmental models with time delay. J Dyn Differ Equ 29:67–82

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to two anonymous referees for their careful reading and helpful suggestions which led to an important improvement of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiunan Wang.

Additional information

This work is supported in part by the NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhao, XQ. A Malaria Transmission Model with Temperature-Dependent Incubation Period. Bull Math Biol 79, 1155–1182 (2017). https://doi.org/10.1007/s11538-017-0276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0276-3

Keywords

Navigation