Skip to main content

Advertisement

Log in

A New Poisson–Nernst–Planck Model with Ion–Water Interactions for Charge Transport in Ion Channels

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this work, we propose a new Poisson–Nernst–Planck (PNP) model with ion–water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion–water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion–water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion–water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abaid N, Eisenberg BS, Liu WS (2008) Asymptotic expansions of I–V relations via a Poisson–Nernst–Planck system. SIAM J Appl Dyn Syst 7(4):1507–1526

    Article  MathSciNet  MATH  Google Scholar 

  • Allen T, Kuyucak S, Chung SH (1999) Molecular dynamics study of the KcsA potassium channel. Biophys J 77:2502–2516

    Article  Google Scholar 

  • Antypov D, Barbosa MC, Holm C (2005) Incorporation of excluded-volume correlations into Poisson–Boltzmann theory. Phys Rev E 71(061):106

    Google Scholar 

  • Bazant MZ, Storey BD, Kornyshev AA (2011) Double layer in ionic liquids: overscreening versus crowding. Phys Rev Lett 106(046):102

    Google Scholar 

  • Ben-Yaakov D, Andelman D, Podgornik R, Podgornik R (2011) Ion-specific hydration effects: extending the Poisson–Boltzmann theory. Curr Opin Coll Interface Sci 16:542–550

    Article  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States D, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  Google Scholar 

  • Cardenas AE, Coalson RD, Kurnikova MG (2000) Three-dimensional Poisson–Nernst–Planck theory studies: influence of membrane electrostatics on Gramicidin A channel conductance. Biophys J 79:80–93

    Article  Google Scholar 

  • Chandra A (2000) Static dielectric constant of aqueous electrolyte solutions: is there any dynamic contribution? J Chem Phys 113:903–905

    Article  Google Scholar 

  • Chen D (2014) Modeling and computation of heterogeneous implicit solvent and its applications for biomolecules. Mol Based Math Biol 2:2299–3266

    Article  Google Scholar 

  • Chen D, Wei GW (2012) Quantum dynamics in continuum for proton transport III: generalized correlation. J Chem Phys 136(134):109

    Google Scholar 

  • Chen D, Wei GW (2013) Quantum dynamics in continuum for proton transport I: basic formulation. Commun Comput Phys 13:285–324

    Article  Google Scholar 

  • Chen D, Lear J, Eisenberg BS (1997) Permeation through an open channel: Poisson–Nernst–Planck theory of a synthetic ionic channel. Biophys J 72(1):97–116

    Article  Google Scholar 

  • Chen D, Chen Z, Chen C, Geng WH, Wei GW (2011) MIBPB: a software package for electrostatic analysis. J Comput Chem 32:756–770

    Article  Google Scholar 

  • Chen D, Chen Z, Wei GW (2012) Quantum dynamics in continuum for proton transport II: variational solvent–solute intersurface. Int J Numer Methods Biomed Eng 28:25–51

    Article  MATH  Google Scholar 

  • Cheng MH, Coalson RD (2005) An accurate and efficient empirical approach for calculating the dielectric self-energy and ion–ion pair potential in continuum models of biological ion channels. J Phys Chem B 109(1):488–498

    Article  Google Scholar 

  • Cheng MH, Coalson RD, Tang P (2010) Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel. J Am Chem Soc 132(46):16442–16449

    Article  Google Scholar 

  • Chung SH, Allen TW, Kuyucak S (2002) Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys J 82:628–645

    Article  Google Scholar 

  • Coalson RD, Kurnikova MG (2005) Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans Nanobiosci 4(1):81–93

    Article  Google Scholar 

  • Corry B, Kuyucak S, Chung SH (2003) Dielectric self-energy in Poisson–Boltzmann and Poisson–Nernst–Planck models of ion channels. Biophys J 84(6):3594–3606

    Article  Google Scholar 

  • Dyrka W, Augousti AT, Kotulska M (2008) Ion flux through membrane channels: an enhanced algorithm for the Poisson–Nernst–Planck model. J. Comput Chem 29:1876–1888

    Article  Google Scholar 

  • Eisenberg BS, Liu WS (2006) Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J Math Anal 38(6):1932–1966

    Article  MathSciNet  MATH  Google Scholar 

  • Eisenberg BS, Hyon YK, Liu C (2010) Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J Chem Phys 133(104):104

    Google Scholar 

  • Engels M, Gerwert K, Bashford D (1995) Computational studies on bacteriorhodopsin: conformation and proton transfer energetics. Biophys Chem 56:95

    Article  Google Scholar 

  • Flavell A, Machen M, Eisenberg B, Kabre J, Liu C, Li X (2014) A conservative finite difference scheme for Poisson–Nernst–Planck equations. J Comput Electron 13:235–249

    Article  Google Scholar 

  • Gillespie D, Nonner W, Eisenberg BS (2002) Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J Phys Condens Matter 14(46):12129–12145

    Article  Google Scholar 

  • Gilson MK, Davis ME, Luty BA, McCammon JA (1993) Computation of electrostatic forces on solvated molecules using the Poisson–Boltzmann equation. J Phys Chem 97(14):3591–3600

    Article  Google Scholar 

  • Gordon D, Krishnamurthy V, Chung S (2009) Generalized langevin models of molecular dynamics simulations with applications to ion channels. J Chem Phys 131:134102

    Article  Google Scholar 

  • Harguindey S, Arranz J, Wahl M, Orives G, Reshkin S (2009) Proton transport inhibitors as potentially selective anticancer drugs. Anticancer Res 29:2127–2136

    Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes. Sinauer Associates, Sunderland

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  Google Scholar 

  • Hollerbach U, Chen D, Eisenberg BS (2002) Two- and three-dimensional Poisson–Nernst–Planck simulations of current flow through Gramicidin A. J Sci Comput 16(4):373–409

    Article  MATH  Google Scholar 

  • Holst M, Baker N, Wang F (2000) Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples. J Comput Chem 21(15):1319–1342

    Article  Google Scholar 

  • Hu L, Wei GW (2012) Nonlinear Poisson equation for heterogeneous media. Biophys J 103:758–766

    Article  Google Scholar 

  • Hwang H, Schatz GC, Ratner MA (2006) Ion current calculations based on three dimensional Poisson–Nernst–Planck theory for a cyclic peptide nanotube. J Phys Chem B 110:6999–7008

    Article  Google Scholar 

  • Hyon Y, Eisenberg BS, Liu C (2011) A mathematical model of the hard sphere repulsion in ionic solutions. Commun Math Sci 9:459–475

    Article  MathSciNet  MATH  Google Scholar 

  • Im W, Roux B (2002) Ion permeation and selectivity of ompf porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J Mol Biol 322:851–869

    Article  Google Scholar 

  • Jo S, Vargyas M, Vasko-Szedlar J, Roux B, Im W (2008) Pbeq-solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res 36:W270–W275

    Article  Google Scholar 

  • Jordan PC (2005) Fifty years of progress in ion channel research. IEEE Trans Nanobiosci 4:3–9

    Article  Google Scholar 

  • Jung YW, Lu BZ, Mascagni M (2009) A computational study of ion conductance in the KcsA K+ channel using a Nernst–Planck model with explicit resident ions. J Chem Phys 131:215101

    Article  Google Scholar 

  • Klapper I, Hagstrom R, Fine R, Sharp K, Honig B (1986) Focussing of electric fields in the active site of Cu–Zn superoxide dismutase: effects of ionic strength and amino acid modification. Protein 1:47–59

    Article  Google Scholar 

  • Krishnamurthy V, Chung SH (2007) Large-scale dynamical models and estimation for permeation in biological membrane ion channels. Proc IEEE 95:853–880

    Article  Google Scholar 

  • Kurnikova MG, Coalson RD, Graf P, Nitzan A (1999) A lattice relaxation algorithm for three-dimensional Poisson–Nernst–Planck theory with application to ion transport through the Gramicidin A channel. Biophys J 76:642–656

    Article  Google Scholar 

  • Kuyucak S, Andersen OS, Chung SH (2001) Models of permeation in ion channels. Rep Prog Phys 64:1427–1472

    Article  Google Scholar 

  • Li H, Lu B (2014) An ionic concentration and size dependent dielectric permittivity Poisson–Boltzmann model for biomolecular solvation studies. J Chem Phys 141(024):115

    Article  Google Scholar 

  • Li B, Lu BZ, Wang ZM, McCammon JA (2010) Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates. Phys A 389(7):1329–1345

    Article  Google Scholar 

  • Li B, Wen J, Zhou S (2016) Mean-field theory and computation of electrostatics with ionic concentration dependent dielectrics. Commun Math Sci 14:249–271

    Article  MathSciNet  MATH  Google Scholar 

  • Lin TC, Eisenberg B (2014) A new approach to the Lennard-Jones potential and a new model: PNP-steric equations. Commun Math Sci 12:149–173

    Article  MathSciNet  MATH  Google Scholar 

  • Liu WS (2005) Geometric singular perturbation approach to steady-state Poisson–Nernst–Planck systems. SIAM J Appl Math 65(3):754–766

    Article  MathSciNet  MATH  Google Scholar 

  • Liu JL, Eisenberg B (2014) Poisson–Nernst–Planck–Fermi theory for modeling biological ion channels. J Chem Phys 141:22D532

    Article  Google Scholar 

  • Lu BZ, Chen WZ, Wang CX, Xu XJ (2002) Protein molecular dynamics with electrostatic force entirely determined by a single Poisson–Boltzmann calculation. Proteins 48(3):497–504

    Article  Google Scholar 

  • Lu BZ, Holst MJ, McCammon JA, Zhou YC (2010) Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions. J Comput Phys 229(19):6979–6994

    Article  MathSciNet  MATH  Google Scholar 

  • Luo R, David L, Gilson MK (2002) Accelerated Poisson–Boltzmann calculations for static and dynamic systems. J Comput Chem 23(13):1244–1253

    Article  Google Scholar 

  • Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK, Bagheri B, Scott LR, McCammon JA (1995) Electrostatics and diffusion of molecules in solution—simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 91(1–3):57–95

    Article  Google Scholar 

  • Mathur SR, Murthy JY (2009) A multigrid method for the Poisson–Nernst–Planck equations. SIAM J Appl Math 52(17–18):4031–4039

    MATH  Google Scholar 

  • Molenaar R (2011) Ion channels in glioblastoma. ISRN Neurol 2011:590249

  • Prabhu NV, Panda M, Yang QY, Sharp KA (2008) Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules. J Comput Chem 29:1113–1130

    Article  Google Scholar 

  • Roux B (2002) Computational studies of the gramicidin channel. Acc Chem Res 35:366–375

    Article  MathSciNet  Google Scholar 

  • Roux B, Allen T, Berneche S, Im W (2004) Theoretical and computational models of biological ion channels. Q Rev Biophys 37(1):15–103

    Article  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–596

    Article  Google Scholar 

  • Schumaker MF, Pomes R, Roux B (2000) A combined molecular dynamics and diffusion model of single proton conduction through gramicidin. Biophys J 79:2840–2857

    Article  Google Scholar 

  • Sharp KA, Honig B (1990) Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equatlon. J Phys Chem 94:7684–7692

    Article  Google Scholar 

  • Shrivastava IH, Sansom MS (2000) Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayter. Biophys J 78:557–570

    Article  Google Scholar 

  • Singer A, Gillespie D, Norbury J, Eisenberg RS (2008) Singular perturbation analysis of the steady state Poisson–Nernst–Planck system: applications to ion channels. Eur J Appl Math 19:541–560

    Article  MathSciNet  MATH  Google Scholar 

  • Vlachy V (1999) Ionic effects beyond Poisson–Boltzmann theory. Annu Rev Phys Chem 50:145–165

    Article  Google Scholar 

  • Wei GW (2010) Differential geometry based multiscale models. Bull Math Biol 72:1562–1622

    Article  MathSciNet  MATH  Google Scholar 

  • Wei GW, Zheng Q, Chen Z, Xia K (2012) Differential geometry based ion transport models. SIAM Rev 54(4):699–754

    Article  MathSciNet  MATH  Google Scholar 

  • Xie D, Zhou SZ (2007) A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation. Bit Numer Math 47:853–871

    Article  MathSciNet  MATH  Google Scholar 

  • Xie D, Jiang Y, Scott L (2013) Efficient algorithms for solving a nonlocal dielectric model for protein in ionic solvent. SIAM J Sci Comput 38:B1267–B1284

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng Q, Wei GW (2011) Poisson–Boltzmann–Nernst–Planck model. J Chem Phys 134(194):101

    Google Scholar 

  • Zheng Q, Chen D, Wei GW (2011) Second-order Poisson–Nernst–Planck solver for ion transport. J Comput Phys 230:5239–5262

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is funded by the Faculty Research Grant 2015–2017 provided by the University of North Carolina at Charlotte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D. A New Poisson–Nernst–Planck Model with Ion–Water Interactions for Charge Transport in Ion Channels. Bull Math Biol 78, 1703–1726 (2016). https://doi.org/10.1007/s11538-016-0196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0196-7

Keywords

Navigation