Skip to main content
Log in

Cyclic Feedback Systems with Quorum Sensing Coupling

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Synchronization and desynchronization is of great interest in the study of circadian rhythms, metabolic oscillations and time-dependent cell aggregate behaviors. Several recent studies examine synchronization and other dynamics in models of repressilators coupled by a quorum sensing mechanism that uses a diffusive signal. Their numerical simulations have shown the complexity of the collective behavior depends sensitively on which protein upregulates diffusive signal. In this paper, we rigorously prove that the collective dynamics indeed strongly depends on how the signaling network integrates into the repressilator network. In fact we prove a general result for a class of negative cyclic feedback systems with signaling of which the repressilator is but one example. We show that if the feedback along the signaling loop is also negative, the resulting negative feedback, negative signaling (Nf–Ns) system admits either unique stable equilibrium, or a stable oscillation. When a positive signaling feedback is included, the system is no longer (Nf–Ns) and numerically exhibits multistable dynamics (Ullner et al. in Phys Rev Lett 99:148103, 2007; Phys Rev E 78:031904, 2008). We demonstrate that this multistability emerges through saddle node bifurcations of a sole cubic curve—as in generic bistable models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Or CI and LacI, respectively.

  2. When the equilibria \(\bar{\mathbf{x}}\) is synchronous, \(S_i=S\) for all i.

  3. Of equilibria and periodic orbits.

References

  • Buse O, Kuznetsov A, Perez R (2009) Existence of limit cycles in the repressilator equations. Int J Bifurc Chaos 19(12):4097–4106

    Article  MathSciNet  MATH  Google Scholar 

  • Buse O, Perez R, Kuznetsov A (2010) Dynamical properties of the repressilator model. Phys Rev E 81:066206

    Article  MathSciNet  Google Scholar 

  • De Monte S, d’Ovidio F, Danø S, Sørensen PG (2007) Dynamical quorum sensing: Population density encoded in cellular dynamics. PNAS 104(47):18377

    Article  Google Scholar 

  • Dias APS, Rodrigues A (2009) Hopf bifurcation with \(S_N\)-symmetry. Nonlinearity 22:627–666

    Article  MathSciNet  MATH  Google Scholar 

  • Ellowitz M, Leibler S (2000) A synthetic oscillatory network of transcription regulators. Nature 403:335–338

    Article  Google Scholar 

  • Garcia-Ojalvo J, Ellowitz MB, Strogatz SH (2004) Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. PNAS 101(30):10955–10960

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky M, Stewart I, Schaeffer D (1988) Singularities and groups in bifurcation theory, Appl. Math. Sci. 69, vol II. Springer, NewYork

    Book  Google Scholar 

  • Gedeon T, Mischaikow K (1995) Structure of the global attractor of cyclic feedback systems. J. Dyn. Differ. Equ. 7:141–190

    Article  MathSciNet  MATH  Google Scholar 

  • Gedeon T (1998) Cyclic feedback systems, vol 637. Memoirs of AMS, Providence

    MATH  Google Scholar 

  • Gonze D (2013) Modeling the effect of cell division on genetic oscillators. J Theor Biol 325:22–33

    Article  MathSciNet  MATH  Google Scholar 

  • Koseska A, Ullner E, Volkov E, Garcia-Ojalvo J (2010) Cooperative differentiation through clustering in multicellular populations. J Theor Biol 263:189–202

    Article  MathSciNet  Google Scholar 

  • Levine J, Lin Y, Elowitz M (2013) Functional roles of pulsing in genetic circuits. Science 342:1193–1200

    Article  Google Scholar 

  • Mallet-Paret J, Smith H (1990) The Poincare–Bendixson theorem for monotone cyclic feedback systems. J Dyn Differ Equ 2:367–421

    Article  MathSciNet  MATH  Google Scholar 

  • Muller S, Hofbauer J, Endler L, Flamm C, Widder S, Schuster P (2006) A generalized model of the represillator. J Math Biol 53:905–937

    Article  MathSciNet  MATH  Google Scholar 

  • Nandagopal N, Elowitz M (2011) Synthetic biology: integrated gene circuits. Science 333:1244–1248

    Article  Google Scholar 

  • Pecora L, Carroll T (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80(10):2109–2112

    Article  Google Scholar 

  • Potapov I, Volkov E, Kuznetsov A (2011) Dynamics of coupled repressilators: the role of mRNA kinetics and transcripton cooperativity. Phys Rev E 83:031901

    Article  Google Scholar 

  • Potapov I, Zhurov BI (2012) Volkov Quorum sensing generated multistability and chaos in a synthetic genetic oscillator. Chaos 22:023117

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart I (1996) Symmetry methods in collisionless many-body problems. J Nonlinear Sci 6:543–563

    Article  MathSciNet  MATH  Google Scholar 

  • Strelkowa N, Barahona M (2011) Transient dynamics around unstable periodic orbits in the generalized repressilator model. Chaos 21:023104

    Article  MathSciNet  MATH  Google Scholar 

  • Thron CD (1991) The secant condition for instability in biochemical feedback control: Parts I and II. Bull Math Biol 53:383–424

    MATH  Google Scholar 

  • Tyson JJ, Othmer HG (1978) The dynamics of feedback control circuits in biochemical pathways. In: Rosen R, Snell FM (eds) Progress in theoretical biology, vol 5. Academic Press, New York

    Google Scholar 

  • Taylor AF, Tinsley MR, Wang F, Huang Z, Showalter K (2009) Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 323(614):614–619

    Article  Google Scholar 

  • Ullner E, Zaikin A, Volkov E, Garcia-Ojalvo J (2007) Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cel communication. Phys Rev Lett 99:148103

    Article  Google Scholar 

  • Ullner E, Koseska A, Kurths J, Volkov E, Kantz H, Garcia-Ojalvo J (2008) Multistability of synthetic genetic networks and repressive cell-to-cell communication. Phys Rev E 78:031904

    Article  Google Scholar 

  • Yang Y, Kuznetsov A (2009) Characterization and merger of oscillatory mechanisms in an artificial genetic regulatory network. Chaos 19:033115

    Article  Google Scholar 

  • Zhou T, Zhang J, Yuan Z, Chen L (2008) Synchronization of genetic oscillators. Chaos 18:037126

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank anonymous referees for thoughtful suggestions that substantially improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Gedeon.

Additional information

We also wish to acknowledge Shuai Zhao for his efforts on this project at its inception.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gedeon, T., Pernarowski, M. & Wilander, A. Cyclic Feedback Systems with Quorum Sensing Coupling. Bull Math Biol 78, 1291–1317 (2016). https://doi.org/10.1007/s11538-016-0187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0187-8

Keywords

Navigation