Skip to main content

Advertisement

Log in

Dynamics of an HIV Model with Multiple Infection Stages and Treatment with Different Drug Classes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Highly active antiretroviral therapy can effectively control HIV replication in infected individuals. Some clinical and modeling studies suggested that viral decay dynamics may depend on the inhibited stages of the viral replication cycle. In this paper, we develop a general mathematical model incorporating multiple infection stages and various drug classes that can interfere with specific stages of the viral life cycle. We derive the basic reproductive number and obtain the global stability results of steady states. Using several simple cases of the general model, we study the effect of various drug classes on the dynamics of HIV decay. When drugs are assumed to be 100 % effective, drugs acting later in the viral life cycle lead to a faster or more rapid decay in viremia. This is consistent with some patient and experimental data, and also agrees with previous modeling results. When drugs are not 100 % effective, the viral decay dynamics are more complicated. Without a second population of long-lived infected cells, the viral load decline can have two phases if drugs act at an intermediate stage of the viral replication cycle. The slopes of viral load decline depend on the drug effectiveness, the death rate of infected cells at different stages, and the transition rate of infected cells from one to the next stage. With a second population of long-lived infected cells, the viral load decline can have three distinct phases, consistent with the observation in patients receiving antiretroviral therapy containing the integrase inhibitor raltegravir. We also fit modeling prediction to patient data under efavirenz (a nonnucleoside reverse-transcriptase inhibitor) and raltegravir treatment. The first-phase viral load decline under raltegravir therapy is longer than that under efavirenz, resulting in a lower viral load at initiation of the second-phase decline in patients taking raltegravir. This explains why patients taking a raltegravir-based therapy were faster to achieve viral suppression than those taking an efavirenz-based therapy. Taken together, this work provides a quantitative and systematic comparison of the effect of different drug classes on HIV decay dynamics and can explain the viral load decline in HIV patients treated with raltegravir-containing regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrade A, Guedj J, Rosenkranz SL et al (2015) Early HIV RNA decay during raltegravir-containing regimens exhibits two distinct subphases (1a and 1b). AIDS 29(18):2419–2426

    Article  Google Scholar 

  • Andrade A, Rosenkranz SL, Cillo AR et al (2013) Three distinct phases of HIV-1 RNA decay in treatment-naive patients receiving raltegravir-based antiretroviral therapy: ACTG A5248. J Infect Dis 208(6):884–891

    Article  Google Scholar 

  • Browne CJ, Pilyugin SS (2012) Periodic multidrug therapy in a within-host virus model. Bull Math Biol 74:562–589

    Article  MathSciNet  MATH  Google Scholar 

  • Donahue DA, Sloan RD, Kuhl BD, Bar-Magen T et al (2010) Stage-dependent inhibition of HIV-1 replication by antiretroviral drugs in cell culture. Antimicrob Agents Chemother 54:1047–1054

    Article  Google Scholar 

  • Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT et al (1981) Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 305:1425–1431

    Article  Google Scholar 

  • Gallo RC, Sarinm PS, Gelmann EP, Robertguroff M, Richardson E et al (1983) Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220:865–867

    Article  Google Scholar 

  • Gumel AB, McCluskey CC, van den Driessche P (2006) Mathematical study of a staged-progression HIV model with imperfect vaccine. Bull Math Biol 68:2105–2128

    Article  MathSciNet  MATH  Google Scholar 

  • Gilmore JB, Kelleher AD, Cooper DA et al (2013) Explaining the determinants of first phase HIV decay dynamics through the effects of stage-dependent drug action. PLoS Comput Biol 9:e1002971

    Article  MathSciNet  Google Scholar 

  • Hollingsworth T, Anderson R, Fraser C (2008) HIV-1 transmission, by stage of infection. J Infect Dis 198:687–693

    Article  Google Scholar 

  • Hyman JM, Li J (2005) The reproductive number for an HIV model with differential infectivity and staged progression. Linear Algebra Appl 398:101–116

    Article  MathSciNet  MATH  Google Scholar 

  • Hyman JM, Li J, Stanley EA (1999) The differential infectivity and staged progression models for the transmission of HIV. Math Biosci 155:77–109

    Article  MATH  Google Scholar 

  • Huang G, Takeuchi Y, Ma W (2010) Lyapunov functionals for delay differential equations model of viral infections. SIAM J Appl Math 70(7):2693–2708

    Article  MathSciNet  MATH  Google Scholar 

  • Hale J, Verduyn Lunel SM (1993) Introduction to functional differential equations. Appl Math Sci, vol 99. Springer-Verlag, New York

  • Lai X, Zou X (2014) Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission. SIAM Appl Math 74:898–917

    Article  MathSciNet  MATH  Google Scholar 

  • Longini I, Clark W Jr, Haber M et al (1989) The stages of HIV infection: waiting times and infection transmission probabilities. Springer, Berlin Heidelberg

    Google Scholar 

  • Lloyd AL (2001) The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data. Proc R Soc Lond B Biol Sci 268(1469):847–854

    Article  Google Scholar 

  • Markowitz M, Nguyen BY, Gotuzzo E et al (2007) Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study. JAIDS 46:125–133

    Google Scholar 

  • Murray JM, Emery S, Kelleher AD et al (2007) Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS 21:2315–2321

    Article  Google Scholar 

  • Murray JM, Kelleher AD, Cooper DA (2011) Timing of the components of the HIV life cycle in productively infected CD4+ T cells in a population of HIV-infected individuals. J Virol 85:10798–10805

    Article  Google Scholar 

  • Nelson PW, Murray JD, Perelson AS (2000) A model of HIV-1 pathogenesis that includes an intracellular delay. Math Biosci 163:201–215

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson PW, Perelson AS (2002) Mathematical analysis of delay differential equation models of HIV-1 infection. Math Biosci 179:73–94

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson AS et al (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–191

    Article  Google Scholar 

  • Perelson AS, Ribeiro RM (2013) Modeling the within-host dynamics of HIV infection. BMC Biol 11:96–105

    Article  Google Scholar 

  • Rong L, Gilchrist MA, Feng Z et al (2007a) Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility. J Theor Biol 247:804–818

    Article  MathSciNet  Google Scholar 

  • Rong L, Feng Z, Perelson AS (2007b) Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM Appl Math 67:731–756

    Article  MathSciNet  MATH  Google Scholar 

  • Rong L, Feng Z, Perelson AS (2007c) Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull Math Biol 69:2027–2060

    Article  MathSciNet  MATH  Google Scholar 

  • Rong L, Perelson AS (2009a) Modeling HIV persistence, the latent reservoir, and viral blips. J Theor Biol 260:308–331

    Article  MathSciNet  Google Scholar 

  • Rong L, Perelson AS (2009b) Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput Biol 5(10):e1000533

    Article  MathSciNet  Google Scholar 

  • Rong L, Perelson AS (2009c) Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips. Math Biosci 217:77–87

    Article  MathSciNet  MATH  Google Scholar 

  • Sedaghat AR, Dinoso JB, Shen L, Wilke CO, Siliciano RF (2008) Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc Natl Acad Sci USA 105:4832–4837

    Article  Google Scholar 

  • Sedaghat AR, Siliciano RF, Wilke CO (2009) Constraints on the dominant mechanism for HIV viral dynamics in patients on raltegravir. Antivir Ther 14:263–271

    Google Scholar 

  • Shen L, Peterson S, Sedaghat AR et al (2008) Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 14:762–766

    Article  Google Scholar 

  • Vaidya NK, Rong L, Marconi VC et al (2010) Treatment-mediated alterations in HIV fitness preserve CD4+ T cell counts but have minimal effects on viral load. PLoS Comput Biol 6(11):e1001012

    Article  MathSciNet  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • von Kleist M, Menz S, Huisinga W (2010) Drug-class specific impact of antivirals on the reproductive capacity of HIV. PLoS Comput Biol 6:e1000720

    Article  Google Scholar 

  • Wodarz D, Nelson PW (2002) Mathematical models of HIV pathogenesis and treatment. BioEssays 24:1178–1187

    Article  Google Scholar 

  • Wang X, Tao Y (2008) Lyapunov function and global properties of virus dynamics with CTL immune response. Int J Biomath 1:443–448

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Elaiw AM, Song X (2012) Global properties of a delayed HIV infection model with CTL immune response. Appl Math Comput 218:9405–9414

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Liu S (2012) Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Math Biosci Eng 9:685–695

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Liu S (2013) A class of delayed viral models with saturation infection rate and immune response. Math Method Appl Sci 36:125–142

    Article  MATH  Google Scholar 

  • Wang X, Liu S, Rong L (2014) Permanence and extinction of a non-autonomous HIV-1 model with two time delays. Discrete Cont Dyn Syst B 19:1783–1800

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Rong L (2014) Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy. J Theor Biol 360:137–148

    Article  Google Scholar 

  • Wang S, Hottz P, Schechter M, Rong L (2015) Modeling the slow CD4+ T cell decline in HIV-infected individuals. PLoS Comput Biol 11(12):e1004665

    Article  Google Scholar 

  • Wawer M, Gray R, Sewankambo N et al (2005) Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai. Uganda J Infect Dis 191:1403–1409

    Article  Google Scholar 

  • Wei X et al (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122

    Article  Google Scholar 

  • World Health Organization (2014) Global health observatory (GHO): HIV/AIDS. http://www.who.int/gho/hiv/en/. Accessed Dec 2014

Download references

Acknowledgments

This work was finished when XW visited Oakland University in 2015. XW is supported by the Nanhu Scholar Program for Young Scholars of XYNU, the NNSF of China (No.11301453), Postdoctoral Science Foundation of China (2014M562366), Postdoctoral Science Foundation of Shaanxi Province (2014010), the Universities Young Teachers Program of Henan Province (2014GGJS-093), and Doctoral Scientific Research Startup Fund of Xinyang Normal University (2014). LR is supported by NSF Grants DMS-1122290 and DMS-1349939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Rong.

Appendix

Appendix

We prove the global stability of steady states of the general multi-stage model (Eq. 1). Inspired by the results in Huang et al. (2010), we define a Lyapunov function \(L_0=L_0(x,y_1,y_2,\ldots ,y_n,v)\) as follows

$$\begin{aligned} L_0 \displaystyle= & {} x(t)-x_0-x_0\ln \frac{x(t)}{x_0}+y_1(t)+\frac{k_1}{\widetilde{k}_1}y_2(t)\\&\displaystyle \ \ +\,\frac{k_1k_2}{\widetilde{k}_1\widetilde{k}_2}y_3(t)+\cdots +\prod \limits _{i=1}^{n-1}\Big (\frac{k_i}{\widetilde{k}_i} \Big )y_n(t)+\prod \limits _{i=1}^n\Big (\frac{k_i}{\widetilde{k}_i}\Big )v(t). \end{aligned}$$

Calculating the derivative of \(L_0\) along the positive solution of system (1) and using \(\lambda =\mu x_0\), \(R_0\le 1\), we have

$$\begin{aligned} \displaystyle \frac{{\hbox {d}}L_0}{{\hbox {d}}t}\Big |_{(1)} \displaystyle= & {} \lambda -\mu x-\frac{x_0}{x}(\lambda -\mu x)+(k x_0-\prod \limits _{i=1}^n \Big (\frac{k_i}{\widetilde{k}_i}\Big )c)v\nonumber \\ \displaystyle= & {} \mu (x_0-x)\left( 1-\frac{x_0}{x}\right) +\prod \limits _{i=1}^n \Big (\frac{k_i}{\widetilde{k}_i}\Big )c\left[ \frac{k\lambda }{c\mu }\prod \limits _{i=1}^n \Big (\frac{\widetilde{k}_i}{k_i}\Big )-1\right] v\nonumber \\ \displaystyle= & {} -\,\frac{\mu (x-x_0)^2}{x}+\prod \limits _{i=1}^n \Big (\frac{k_i}{\widetilde{k}_i}\Big )c(R_0-1)v\nonumber \\\le & {} 0. \end{aligned}$$
(15)

\(\dot{L}_0\Big |_{(1)}=0\) if and only if \(v(t)=0\) (or \(R_0= 1\)) and \(x=x_0\). Therefore, the maximal compact invariant set in \(\{\dot{L}_0\Big |_{(1)}=0\}\) is the singleton \(\{E_0\}\). The global asymptotical stability of the infection-free steady state \(E_0\) follows from LaSalle Invariance Principle (Hale et al. 1993).

To prove the global stability of the infected steady state, we define the Lyapunov function \(L_1=L_1(x,y_1,y_2,\ldots ,y_n,v)\) as follows

$$\begin{aligned} \begin{array}{llll} L_1&{}\displaystyle =x(t)-x^{*}-x^{*}\ln \frac{x(t)}{x^{*}}+y_1(t)-y_1^{*}-y_1^{*}\ln \frac{y_1(t)}{y_1^{*}}\\ &{}\displaystyle \ \ \ +\sum \limits _{i=2}^n\prod \limits _{j=1}^{i-1}\Big (\frac{k_j}{\widetilde{k}_j}\Big ) \left( y_i(t)-y_i^{*}-y_i^{*}\ln \frac{y_i(t)}{y_i^{*}}\right) \\ &{}\displaystyle \ \ \ +\prod \limits _{i=1}^n\Big (\frac{k_i}{\widetilde{k}_i}\Big ) \left( v(t)-v^{*}-v^{*}\ln \frac{v(t)}{v^{*}}\right) . \end{array} \end{aligned}$$
(16)

Calculating the derivative of \(L_1\) along the positive solution of system (1), we obtain

$$\begin{aligned} \displaystyle \frac{{\hbox {d}}L_1}{{\hbox {d}}t}\Big |_{(1)} \displaystyle= & {} \dot{x}-\frac{x^{*}}{x}\dot{x}+\dot{y}_1-\frac{y_1^{*}}{y_1}\dot{y}_1+\prod \limits _{i=1}^n\frac{k_i}{\widetilde{k}_i}\left( \dot{v}-\frac{v^{*}}{v}\dot{v}\right) \nonumber \\&\displaystyle +\left\{ \frac{k_1}{\widetilde{k}_1}\left( \dot{y}_2-\frac{y_2^{*}}{y_2}\dot{y}_2\right) +\frac{k_1k_2}{\widetilde{k}_1\widetilde{k}_2}\left( \dot{y}_3-\frac{y_3^{*}}{y_3}\dot{y}_3\right) \right. \nonumber \\&\left. \quad +\cdots +\prod \limits _{i=1}^{n-1}\Big (\frac{k_i}{\widetilde{k}_i}\Big )\left( \dot{y}_n-\frac{y_n^{*}}{y_n}\dot{y}_n\right) \right\} \nonumber \\ \displaystyle= & {} \lambda -\mu x-k xv-\frac{x^{*}}{x}(\lambda -\mu x-k xv) +kxv-k_1y_1-\frac{y_1^{*}}{y_1}(k xv-k_1y_1)\nonumber \\&\displaystyle \ \ \ +\,\prod \limits _{i=1}^n\Big (\frac{k_i}{\widetilde{k}_i}\Big )(\widetilde{k}_ny_n-cv)-\prod \limits _{i=1}^n\Big (\frac{k_i}{\widetilde{k}_i}\Big )\frac{v^{*}}{v}(\widetilde{k}_ny_n-cv) \nonumber \\&\displaystyle +\frac{k_1}{\widetilde{k}_1}(\widetilde{k}_1y_1-k_2y_2)-\frac{k_1}{\widetilde{k}_1}\cdot \frac{y_2^{*}}{y_2}(\widetilde{k}_1y_1-k_2y_2)\nonumber \\&\displaystyle +\,\frac{k_1k_2}{\widetilde{k}_1\widetilde{k}_2}(\widetilde{k}_2y_2-k_3y_3)-\frac{k_1k_2}{\widetilde{k}_1\widetilde{k}_2}\cdot \frac{y_3^{*}}{y_3}(\widetilde{k}_2y_2-k_3y_3)+\cdots \nonumber \\&\displaystyle +\,\prod \limits _{i=1}^{n-1}\Big (\frac{k_i}{\widetilde{k}_i}\Big )(\widetilde{k}_{n-1}y_{n-1}-k_ny_n)-\prod \limits _{i=1}^{n-1}\Big (\frac{k_i}{\widetilde{k}_i}\Big )\frac{y_n^{*}}{y_n}(\widetilde{k}_{n-1}y_{n-1}-k_ny_n)\nonumber \\ \displaystyle= & {} \lambda -\mu x-\frac{x^{*}}{x}(\lambda -\mu x-k xv)-\frac{y_1^{*}}{y_1}(k xv-k_1y_1)\nonumber \\&\displaystyle -\,\prod \limits _{i=1}^n\Big (\frac{k_i}{\widetilde{k}_i}\Big )c v-\prod \limits _{i=1}^n\Big (\frac{k_i}{\widetilde{k}_i}\Big )\frac{v^{*}}{v}(\widetilde{k}_ny_n-cv) -\frac{k_1}{\widetilde{k}_1}\cdot \frac{y_2^{*}}{y_2}(\widetilde{k}_1y_1-k_2y_2)\nonumber \\&\displaystyle -\,\frac{k_1k_2}{\widetilde{k}_1\widetilde{k}_2}\cdot \frac{y_3^{*}}{y_3}(\widetilde{k}_2y_2-k_3y_3)-\cdots -\prod \limits _{i=1}^{n-1}\Big (\frac{k_i}{\widetilde{k}_i}\Big )\frac{y_n^{*}}{y_n}(\widetilde{k}_{n-1}y_{n-1}-k_ny_n). \end{aligned}$$
(17)

From the infected steady state, we have

$$\begin{aligned} \displaystyle k x^{*}v^{*}= & {} k_1y_1^{*},\ \lambda =\mu x^{*}+k x^{*}v^{*}=\mu x^{*}+k_1y_1^{*}, \nonumber \\ \displaystyle \widetilde{k}_1y_1^{*}= & {} k_2y_2^{*},\ \widetilde{k}_2y_2^{*}=k_3y_3^{*},\ \cdots ,\ \widetilde{k}_{n-1}y_{n-1}^{*}=k_ny_n^{*},\nonumber \\ \widetilde{k}_ny_n^{*}= & {} cv^{*},\ cv^{*}=k_1y_1^{*}\prod \limits _{i=1}^n \Big (\frac{\widetilde{k}_i}{k_i}\Big ),\ k_1y_1^{*}=\prod \limits _{i=1}^{n-1}\Big ( \frac{k_i}{\widetilde{k}_i}\Big )k_ny_n^{*},\nonumber \\ \displaystyle \frac{k_1k_2}{\widetilde{k}_1}y_2^{*}= & {} \frac{k_1}{\widetilde{k}_1}\cdot k_2y_2^{*}=\frac{k_1}{\widetilde{k}_1}\cdot \widetilde{k}_1y_1^{*}=k_1y_1^{*}, \nonumber \\ \displaystyle \frac{k_1k_2k_3}{\widetilde{k}_1\widetilde{k}_2}y_3^{*}= & {} \frac{k_1k_2}{\widetilde{k}_1\widetilde{k}_2}\cdot \widetilde{k}_2y_2^{*}=\frac{k_1}{\widetilde{k}_1}\cdot k_2y_2^{*}=\frac{k_1}{\widetilde{k}_1}\cdot \widetilde{k}_1y_1^{*}=k_1y_1^{*},\nonumber \\&\cdots \nonumber \\ \displaystyle \prod \limits _{i=1}^{n-1}\Big ( \frac{k_i}{\widetilde{k}_i}\Big )k_ny_n^{*}= & {} \prod \limits _{i=1}^{n-1}\Big ( \frac{k_i}{\widetilde{k}_i}\Big )\widetilde{k}_{n-1}y_{n-1}^{*}=\prod \limits _{i=1}^{n-2}\Big ( \frac{k_i}{\widetilde{k}_i}\Big )k_{n-1}y_{n-1}^{*}=\cdots =k_1y_1^{*}. \end{aligned}$$
(18)

Therefore, we have

$$\begin{aligned} \displaystyle k x^{*}v= & {} k_1y_1^{*}\cdot \frac{x^{*}v}{x^{*}v^{*}}=k_1y_1^{*}\cdot \frac{v}{v^{*}},\nonumber \\ \displaystyle \frac{y_1^{*}}{y_1}\cdot kxv= & {} \frac{y_1^{*}}{y_1}\cdot \frac{k_1y_1^{*}}{x^{*}v^{*}}xv=k_1y_1^{*}\cdot \frac{y_1^{*}xv}{y_1x^{*}v^{*}},\nonumber \\ \displaystyle \frac{k_1k_2}{\widetilde{k}_1}y_2^{*}= & {} \frac{k_1k_2k_3}{\widetilde{k}_1\widetilde{k}_2}y_3^{*}=\cdots =\prod \limits _{i=1}^{n-1}\Big (\frac{k_i}{\widetilde{k}_i}\Big )\cdot k_ny_n^{*}=k_1y_1^{*},\nonumber \\ \displaystyle \prod \limits _{i=1}^n\Big (\frac{k_i}{\widetilde{k}_i}\Big )cv= & {} k_1y_1^{*}\cdot \frac{v}{v^{*}},\ \prod \limits _{i=1}^n \Big (\frac{k_i}{\widetilde{k}_i}\Big )cv^{*}=k_1y_1^{*},\nonumber \\ \displaystyle \prod \limits _{i=1}^n\Big (\frac{k_i}{\widetilde{k}_i}\Big )\cdot \frac{v^{*}}{v}\widetilde{k}_{n}y_{n}= & {} \prod \limits _{i=1}^{n-1} \Big (\frac{k_i}{\widetilde{k}_i}\Big )k_ny_n\cdot \frac{v^{*}}{v} =k_1y_1^{*}\cdot \frac{y_nv^{*}}{y_n^{*}v},\nonumber \\ \displaystyle k_1\frac{y_1y_2^{*}}{y_2}= & {} k_1y_1\cdot \frac{y_2^{*}}{y_2}=k_1y_1^{*}\cdot \frac{y_1y_2^{*}}{y_1^{*}y_2},\nonumber \\ \displaystyle \frac{k_1k_2}{\widetilde{k}_1}\frac{y_2y_3^{*}}{y_3}= & {} \frac{k_1}{\widetilde{k}_1}k_2y_2\cdot \frac{y_3^{*}}{y_3}=k_1y_1^{*}\cdot \frac{y_2y_3^{*}}{y_2^{*}y_3}, \nonumber \\&\vdots&\nonumber \\ \displaystyle \prod \limits _{i=1}^{n-2}\Big (\frac{k_i}{\widetilde{k}_i}\Big )k_{n-1}\frac{y_{n-1}y_n^{*}}{y_n}= & {} k_1y_1^{*}\cdot \frac{y_{n-1}y_n^{*}}{y_{n-1}^{*}y_n}. \end{aligned}$$
(19)

From (17) and (19), we get

$$\begin{aligned} \displaystyle \frac{{\hbox {d}}L_1}{{\hbox {d}}t}\Big |_{(1)} \displaystyle= & {} \lambda -\mu x-\frac{x^{*}}{x}(\lambda -\mu x)+k x^{*}v-\frac{y_1^{*}}{y_1}k xv+k_1y_1^{*}\nonumber \\&\displaystyle -\,k_1\cdot \frac{y_1y_2^{*}}{y_2}-\frac{k_1k_2}{\widetilde{k}_1}\cdot \frac{y_2y_3^{*}}{y_3}-\cdots - \prod \limits _{i=1}^{n-2}\Big (\frac{k_i}{\widetilde{k}_i}\Big )k_{n-1}\frac{y_{n-1}y_n^{*}}{y_n}\nonumber \\&\displaystyle +\,\frac{k_1k_2}{\widetilde{k}_1}y_2^{*}+\frac{k_1k_2k_3}{\widetilde{k}_1\widetilde{k}_2}y_3^{*}+\cdots + \prod \limits _{i=1}^{n-1}\Big (\frac{k_i}{\widetilde{k}_i}\Big )k_ny_n^{*}\nonumber \\&\displaystyle -\,\prod \limits _{i=1}^{n}\Big (\frac{k_i}{\widetilde{k}_i}\Big )cv+\prod \limits _{i=1}^{n}\Big (\frac{k_i}{\widetilde{k}_i}\Big )c v^{*}-\prod \limits _{i=1}^{n}\Big (\frac{k_i}{\widetilde{k}_i}\Big )\frac{v^{*}}{v}\widetilde{k}_ny_n\nonumber \\ \displaystyle= & {} \mu x^{*}+k_1y_1^{*}-\mu x-\frac{x^{*}}{x}(\mu x^{*}+k_1y_1^{*}-\mu x)+k_1y_1^{*}\frac{v}{v^{*}}-k_1y_1^{*}\frac{y_1^{*}xv}{y_1x^{*}v^{*}}\nonumber \\&\displaystyle +\,k_1y_1^{*} -k_1y_1^{*}\frac{v}{v^{*}}+k_1y_1^{*}-k_1y_1^{*}\frac{y_nv^{*}}{y_n^{*}v}-k_1y_1^{*}\frac{y_1y_2^{*}}{y_1^{*}y_2}\nonumber \\&\displaystyle -\,\frac{k_1}{\widetilde{k}_1}k_2y_2\cdot \frac{y_3^{*}}{y_3} -\cdots -\prod \limits _{i=1}^{n-2}\Big (\frac{k_i}{\widetilde{k}_i}\Big )\cdot k_{n-1}y_{n-1}\cdot \frac{y_n^{*}}{y_n}+(n-1)k_1y_1^{*}\nonumber \\ \displaystyle= & {} \mu x^{*}(1-\frac{x^{*}}{x})-\mu x(1-\frac{x^{*}}{x})+(n+2)k_1y_1^{*}\nonumber \\&\displaystyle +\,k_1y_1^{*}\left( -\frac{y_1^{*}xv}{y_1x^{*}v^{*}}-\frac{y_nv^{*}}{y_n^{*}v}-\frac{x^{*}}{x}\right) \nonumber \\&\displaystyle -\,k_1y_1^{*}\left( \frac{y_1y_2^{*}}{y_1^{*}y_2}+\frac{y_2y_3^{*}}{y_2^{*}y_3}+\cdots +\frac{y_{n-1}y_n^{*}}{y_{n-1}^{*}y_n}\right) \nonumber \\ \displaystyle= & {} -\,\frac{\mu (x-x^{*})^2}{x}+k_1y_1^{*}\left( n+2-\frac{y_1y_2^{*}}{y_1^{*}y_2}-\frac{y_2y_3^{*}}{y_2^{*}y_3}-\cdots - \frac{y_{n-1}y_n^{*}}{y_{n-1}^{*}y_n}\right. \nonumber \\&\displaystyle \left. -\,\frac{y_nv^{*}}{y_n^{*}v}-\frac{x^{*}}{x}-\frac{y_1^{*}xv}{y_1x^{*}v^{*}}\right) \nonumber \\ \displaystyle\le & {} 0. \end{aligned}$$
(20)

The last inequality follows from the fact that the arithmetic mean is always greater than or equal to the geometric mean, i.e.,

$$\begin{aligned} \frac{y_1y_2^{*}}{y_1^{*}y_2}+\frac{y_2y_3^{*}}{y_2^{*}y_3}+\cdots + \frac{y_{n-1}y_n^{*}}{y_{n-1}^{*}y_n}+\frac{y_nv^{*}}{y_n^{*}v}+\frac{x^{*}}{x}+\frac{y_1^{*}xv}{y_1x^{*}v^{*}}\ge n+2. \end{aligned}$$

\(\dot{L}_1\Big |_{(1)}=0\) if and only if \(x=x^*\) and the left side of the above inequality is equal to \(n+2\), i.e.,

$$\begin{aligned} \frac{y_1}{y_1^{*}}=\frac{y_2}{y_2^{*}}=\cdots =\frac{y_n}{y_n^{*}} =\frac{v}{v^{*}}. \end{aligned}$$
(21)

From Eq. (21), we have \(v=v^*\) and \(y_i=y_i^*\), \(i=1,2,\cdots ,n\). Therefore, we conclude that \(\dot{L}_1\Big |_{(1)}\le 0\) holds for all \(x,y_i,v>0\). The maximal compact invariant set in \(\{\dot{L}_1\Big |_{(1)}=0\}\) is the singleton \(\{E^{*}\}\). We finish the proof of the global asymptotical attractivity of the infected steady state \(E^{*}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Song, X., Tang, S. et al. Dynamics of an HIV Model with Multiple Infection Stages and Treatment with Different Drug Classes. Bull Math Biol 78, 322–349 (2016). https://doi.org/10.1007/s11538-016-0145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0145-5

Keywords

Navigation