Skip to main content
Log in

Protein Synthesis Driven by Dynamical Stochastic Transcription

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by a stochastic perturbation whose statistics satisfies the master equations. In this approach, from the knowledge of the analytical time-dependent distribution of mRNA number, we are able to calculate the dynamics of the probability density of the protein population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. Government Printing Office, U.S

    MATH  Google Scholar 

  • Arnold L (1998) Random dynamical systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422:633–637

    Article  Google Scholar 

  • Cai L, Friedman N, Xie X (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082):358–62. doi:10.1038/nature04599

    Article  Google Scholar 

  • Cogburn R, Torrez WC (1981) Birth and death processes with random environments in continuous time. J Appl Probab 18(1):19–30

    Article  MathSciNet  MATH  Google Scholar 

  • Crudu A, Debussche A, Muller A, Radulescu O (2012) Convergence of stochastic gene networks to hybrid piecewise deterministic processes. Ann Appl Probab 22(5):1822–1859

    Article  MathSciNet  MATH  Google Scholar 

  • Crudu A, Debussche A, Radulescu O (2009) Hybrid stochastic simplifications for multiscale gene networks. BMC Syst Biol 3(1):89

    Article  Google Scholar 

  • Delbrück M (1940) Statistical fluctuations in autocatalytic reactions. J Chem Phys 8:120–124

    Article  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186. doi:10.1126/science.1070919

    Article  Google Scholar 

  • Ferguson M, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royer C (2012) Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proc Natl Acad Sci USA 109(1):155–160

    Article  Google Scholar 

  • Ferreira RC, Bosco FAR, Briones MRS (2009) Scaling properties of transcription profiles in gene networks. Int J Bioinform Res Appl 5(2):178–186

    Article  Google Scholar 

  • Ferreira RC, Briones MRS, Antoneli F. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks. arXiv:1309.0765 (2013)

  • Friedman N, Cai L, Xie XS (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97(16):168,302

    Article  Google Scholar 

  • Golding I, Paulsson J, Zawilski S, Cox E (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123(6):1025–36. doi:10.1016/j.cell.2005.09.031

    Article  Google Scholar 

  • Hornos JEM, Schultz D, Innocentini GCP, Wang J, Walczak AM, Onuchic JN, Wolynes PG (2005) Self-regulating gene: an exact solution. Phys Rev E 72(5):e051,907. doi:10.1103/PhysRevE.72.051907

    Article  MathSciNet  Google Scholar 

  • Innocentini GCP, Forger M, Ramos A, Radulescu O, Hornos JEM (2013) Multimodality and flexibility in stochastic gene expression. Bull Math Biol 75:2600–2630

    Article  MathSciNet  MATH  Google Scholar 

  • Innocentini GCP, Hornos JEM (2007) Modeling stochastic gene expression under repression. J Math Biol 55(3):413–431. doi:10.1007/s00285-007-0090-x

    Article  MathSciNet  MATH  Google Scholar 

  • Iyer-Biswas S, Hayot F, Jayaprakash C (2009) Stochasticity of gene products from transcriptional pulsing. Phys Rev E 79:031,911

    Article  Google Scholar 

  • Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81(6):3116–3136. doi:10.1016/S0006-3495(01)75949-8

    Article  Google Scholar 

  • Lipniacki T, Paszek P, Marciniak-Czochra A, Brasier AR, Kimmel M (2006) Transcriptional stochasticity in gene expression. J Theor Biol 238:348–367. doi:10.1016/j.jtbi.2005.05.032

    Article  MathSciNet  Google Scholar 

  • Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31:69–73

    Article  Google Scholar 

  • Paulsson J (2005) Models of stochastic gene expression. Phys Life Rev 2:157–175

    Article  Google Scholar 

  • Peccoud J, Ycart B (1995) Markovian modelling of gene product synthesis. Theor Popul Biol 48:222–234

    Article  MATH  Google Scholar 

  • Pirone J, Elston T (2004) Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression. J Theor Biol 226:111–121

    Article  MathSciNet  Google Scholar 

  • Ramos AF, Innocentini GCP, Hornos JEM (2011) Exact time-dependent solutions for a self-regulating gene. Phys Rev E 83(6):e062,902. doi:10.1103/PhysRevE.83.062902

    Article  Google Scholar 

  • Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304(5678):1811–1814. doi:10.1126/science.1098641

    Article  Google Scholar 

  • Shahrezaei V, Swain PS (2008) Analytical distributions for stochastic gene expression. Proc Natl Acad Sci USA 105(45):17256–17261. doi:10.1073/pnas.0803850105

    Article  Google Scholar 

  • van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311(5767):1600–1603. doi:10.1126/science.1119623

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for their insights. Work supported by FAPESP, SP, Brazil (G. I., contract 2012/04723-4) and CNPq, Brazil (G. I., contract 202238/2014-8; M. F., contract 307238/2011-3; F. A., contract 306362/2012-0). O. R. thanks CNRS and LABEX Epigenmed for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme C. P. Innocentini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innocentini, G.C.P., Forger, M., Radulescu, O. et al. Protein Synthesis Driven by Dynamical Stochastic Transcription. Bull Math Biol 78, 110–131 (2016). https://doi.org/10.1007/s11538-015-0131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0131-3

Keywords

Mathematics Subject Classification

Navigation