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                    Abstract
The quasi-steady-state approximation (QSSA) is commonly applied in chemical kinetics without rigorous justification. We provide details of such a justification in the ubiquitous case of reversible two-step bimolecular binding in which molecules as an intermediate step of the reaction form a transient complex. First, we justify QSSA in the regime that agrees with the results in the literature and is characterized by \(\max \{R_0, L_0\} \ll K_m\). Here, \(R_0\) and \(L_0\) are the initial concentrations of reacting receptor and ligand, respectively, and \(K_m\) is the Michaelis constant. We also validate QSSA under an alternative condition that can be viewed as partially irreversible binding, and it does not require a tight bound on \(R_0\) and \(L_0\) but rather requires \(k_2 + k_{-2} \ll k_{-1}\). Here, \(k_{-1}\) is the rate constant of decomposition of the transient complex to the ligand and the receptor, and \(k_2\) and \(k_{-2}\) are the forward and the reverse rate constants of transformation of the complex to the product, respectively. Furthermore, we provide arguments that QSSA can also be accurate in a regime when \(\max \{R_0, L_0\} \approx K_m\) and \(k_2 + k_{-2} \approx k_{-1}\) if \(|R_0 - L_0| \ll K_m\). The derived conditions may be of practical use as they provide weaker requirements for the validity of QSSA compared to the existing results.
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                    Notes
	To complete the proof of the forward invariance of \(\varOmega _0\), it is also necessary to check that the phase flow points inwards at the corners of \(\varOmega _0\). That follows directly from the fact that the phase flow \((\ell ,v)\) is continuous, and it points inwards on the rest of the boundary. The same argument can be used in the full proof of Theorem 1 in Sect. 2.7.


	Note that the a priori bounds for \(V(\ell , v)\) are not sharp as the highest value of individual terms is often reached for different values of \(\ell \). The estimates can be further improved by using \(\hbox {d}\ell / \hbox {d}\tau \le 0\) proved in Sect. 2.1. It allows to restrict the range of \(\ell \) in the bounding box \(\varOmega \) to \(\ell ^{*} \le \ell \le 1\).
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Appendix
Appendix
1.1 Monotonicity
First we prove that \(\hbox {d}L/\hbox {d}t \le 0\) for all \(t\ge 0\) for the solution of (12)–(13) subject to the initial condition \((L(0), C(0)) = (L_0, 0)\). The same property then holds for the solution of (6)–(9) subject to (10). Let us assume the contrary, i.e., there is a trajectory (L(t), C(t)) starting at \((L_0, 0)\) such that \(dL / \hbox {d}t(t_1) > 0\) for some \(t_1 > 0\). Since the vector field \((\hbox {d}L/\hbox {d}t, \hbox {d}C/\hbox {d}t)\) points downwards on the C–nullcline for \(L > L^{*}\), the trajectory (L(t), C(t)) can only cross the nullcline for \(L \in (0,L^{*})\). Therefore, there exist \(t_2 \in (0, t_1)\) such that the trajectory (L(t), C(t)) crosses the line segment \(L = L^{*}, C \in [0,C^{*})\) in the phase plane for the first time, i.e., \(L(t) > L^{*}\) for all \(t \in [0, t_2)\). On that segment, \(L(t_2) = L^{*}\) and \(C(t_2) < C^{*}\), and thus by (11) also \(P(t_2) > P^{*}\). Since \(P(0) = 0\) by continuity, there must exist \(t_3 \in (0, t_2)\) such that \(P(t_3) = P^{*}\) and \(\hbox {d}P / \hbox {d}t (t_3) \ge 0\). But (9) implies \(0 \le \hbox {d}P / \hbox {d}t (t_3) = k_2 C(t_3) - k_{-2} P^{*}\), i.e., \(C(t_3) \ge k_{-2}/k_2 P^{*} = C^{*}\). Therefore, \(P(t_3) = P^{*}, C(t_3) \ge C^{*}\), and hence \(L(t_3) \le L^{*}\), yielding a contradiction because \(L(t) > L^{*}\) for all \(t \in [0,t_2)\). Therefore, \(dL/dt \le 0\) for all \(t >0\).
Furthermore, we prove \(\hbox {d}P/\hbox {d}t \ge 0\) for all \(t\ge 0\) for the solution satisfying (6)–(9) subject to (10) by using an argument similar to Darvey and Matlak (1967). Using (6)–(9), the initial conditions, and continuity of the solution, we derive
$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t} (k_2 C - k_{-2} P) = k_2 k_1 L R - k_2 (k_{-1} + k_2 + k_{-2}) C + k_{-2}(k_2 + k_{-2}) P \ge 0\nonumber \\ \end{aligned}$$

                    (62)
                

for all small enough positive t. The stoichiometry restrictions (11) allow us to reduce the system (6)–(9) to the two-dimensional dynamical system in variables (L, P) of the form
$$\begin{aligned} \frac{\hbox {d}L}{\hbox {d}t}= & {} -k_1 L(L + R_0 - L_0) + k_{-1} (L_0 - L - P), \\ \frac{\hbox {d}P}{\hbox {d}t}= & {} k_2 (L_0 - L) - (k_2 + k_{-2}) P. \end{aligned}$$

The P-nullcline is the line connecting the initial condition \((L_0, 0)\) and the point \((0, k_2L_0/(k_2 + k_{-2}))\) in the (L, P) phase plane. Furthermore, the L-nullcline is given by the parabola \(P = L_0 - L - k_1L(L+R_0 - L_0)/k_{-1}\) that contains points \((0, L_0), (L_0,-k_1L_0R_0/k_{-1})\) and that is decreasing for all \(L \ge 0\). Therefore, there is a unique equilibrium of the system in the positive quadrant. The condition (62) and the fact that \(dP /dt = 0\) at \(t=0\) imply that the solution (L(t), P(t)) lies under the P-nullcline for small positive t. Since the solution (L(t), P(t)) cannot cross neither of the nullclines, it remains wedged in between them for all positive t. That immediately implies \(\hbox {d}P / \hbox {d}t \ge 0\) for all \(t \ge 0\).
1.2 Estimates

                              Estimate of 
                              \(t_{L}\). The numerator in the expression (16) for \(t_L\) is equal to the range of values of L given by \(L_\mathrm{max}-L_\mathrm{min}\). It can be estimated by \(L_0\) as \(L + C + P = L_0\), and both P and C are nonnegative. Since \(\hbox {d}L / \hbox {d}t \le 0\) for all t, a sharper estimate \(L_\mathrm{max} - L_\mathrm{min} = L_0 - L^{*}\), where \(L^{*}\) is the equilibrium concentration of L, can be used as well. On the other hand, the denominator in (16) that is equal to the maximal value of \(\hbox {d}L / \hbox {d}t\) can be estimated in the following way. By (12) at the point of its maximum, the function
$$\begin{aligned} U(t) = -k_1 L(t) (L(t) + R_0 - L_0) + k_{-1}C(t) \end{aligned}$$

has its local extreme, i.e., \(\hbox {d}U/ \hbox {d}t = 0\). Hence,
$$\begin{aligned} k_{-1} \frac{\hbox {d}C}{\hbox {d}t} = k_1 \frac{\hbox {d}L}{\hbox {d}t} (2L + R_0 - L_0). \end{aligned}$$

Using (12)–(13), it reduces to an expression for \(C = C(L)\) that is valid at the point of the local maximum:
$$\begin{aligned} C = \frac{\frac{k_{-1}k_{-2}}{k_1} (L_0 - L) + L(L+R_0-L_0)\left[ k_{-1} + k_1(2L + R_0 - L_0)\right] }{k_{-1}(2 L + R_0 - L_0 + K_m)}. \end{aligned}$$

The value of \(\hbox {d}L/\hbox {d}t\) at its eventual point of local maximum is then
$$\begin{aligned} \frac{\hbox {d}L}{\hbox {d}t} \Big |_{\mathrm{max}} = \frac{-(k_2 + k_{-2})L(L+R_0 - L_0) + \frac{k_{-1}k_{-2}}{k_1}(L_0 - L)}{2L + R_0 - L_0 + K_m}\, . \end{aligned}$$

                    (63)
                

If we consider the right-hand side of (63) as a function of L, it is easy to see that it is a decreasing function on its natural domain \(L \in [0, L_0]\), and thus, it reaches its maximum absolute value at one of its end points. Its value at \(L = 0\) is positive and at \(L = L_0\) negative. Since we have proved that \(\hbox {d}L / \hbox {d}t \le 0\) for all \(t \ge 0\), it is enough to consider the value at \(L = L_0\) given by
$$\begin{aligned} \Big |\frac{\hbox {d}L}{\hbox {d}t}\Big |_{\mathrm{max}, L = L_0} = (k_2 + k_{-2}) \frac{L_0R_0}{R_0 + L_0 + K_m}. \end{aligned}$$

The maximum possible value of |dL / dt| is then bounded by the maximum of the values of U(t) at \(t = 0 (L = L_0\) and \(C = 0)\), at \(t = \infty \), i.e., at the system equilibrium for which \(U(t) = 0\) (this follows from the analysis performed in Sect. 2.5) and at its eventual local extreme. Since at \(t = 0, |U(0)|= k_1 L_0R_0\) and \(k_1 K_m \ge k_2 + k_{-2}\), it easy to see that
$$\begin{aligned} \Big |\frac{\hbox {d}L}{\hbox {d}t}\Big |_{\mathrm{max}} \le \max \Big \{k_1 L_0R_0, \frac{(k_2 + k_{-2})L_0R_0}{R_0 + L_0 + K_m}\Big \} = k_1 L_0R_0, \end{aligned}$$

that leads to (17).

                              Estimate of 
                              \(\triangle L / L_0\). Next, we estimate the relative depletion of the ligand during the initial short timescale \(t \in [0, t_C]\), where \(t_C\) is given by (15). The formula for \(\triangle L = L_0 - L(t_C)\) follows from (12):
$$\begin{aligned} \triangle L = \left| -\int _0^{t_C} \frac{\hbox {d}L}{\hbox {d}t} \, \hbox {d}t \right| = \left| -k_{-1}\int _0^{t_C} C \, \hbox {d}t + k_1 \int _0^{t_C} L (L + R_0- L_0)\, \hbox {d}t \right| . \end{aligned}$$

                    (64)
                

Here, both integrals in (64) are positive. Next, we estimate the first integral in (64). Note that \(\hbox {d} / \hbox {d}L (\hbox {d}C/\hbox {d}t) > 0\); therefore, the production of C is increasing with concentration of L. Since \( L \le L_0\) and at the concentration \(L = L_0\) the evolution of C is governed by (14), it follows that
$$\begin{aligned} C(t) \le \frac{L_0R_0}{K_m} \left( 1 - \hbox {e}^{-(k_{-1}+k_2 + k_{-2})t} \right) . \end{aligned}$$

Therefore,
$$\begin{aligned} k_{-1}\int _0^{t_C} C \, \hbox {d}t \le k_{-1}\frac{L_0R_0}{K_m} \int _0^{t_C} 1 - \hbox {e}^{-(k_{-1}+k_2 + k_{-2})t} \hbox {d}t = \frac{L_0R_0}{K_m}\frac{1-\kappa }{\hbox {e}}. \end{aligned}$$

The second integral in (64) can be estimated by the trapezoid rule using the fact that \(L(t_C) = L_0 - \triangle L\):
$$\begin{aligned} k_1 \int _0^{t_C} L(L + R_0 - L_0) \hbox {d}t\approx & {} k_1 t_C \frac{1}{2} \left( L_0 R_0 + (L_0 - \triangle L)(R_0 - \triangle L) \right) \\\approx & {} \frac{L_0R_0}{K_m} - \frac{\triangle L}{K_m} \frac{L_0 + R_0}{2}, \end{aligned}$$

where we neglected the quadratic terms \(O(\triangle ^2 L)\). The quantity \(\triangle L\) in (64) can be then estimated as
$$\begin{aligned} \triangle L \approx -\frac{L_0 R_0}{K_m} \frac{1-\kappa }{\hbox {e}} + \frac{L_0R_0}{K_m} - \triangle L \frac{L_0 + R_0}{2K_m}, \end{aligned}$$

that can be rewritten as
$$\begin{aligned} \triangle L \left( 1 +\frac{L_0 + R_0}{2K_m}\right) \approx \frac{L_0 R_0}{K_m} \left( 1 - \frac{1-\kappa }{e}\right) . \end{aligned}$$

Note that \(\kappa \in [0,1]\), i.e., \(1 - (1-\kappa ) / e= O(1)\). Hence,
$$\begin{aligned} |\triangle L| \approx O\left( \frac{L_0R_0}{2K_m + L_0+R_0}\right) . \end{aligned}$$

                    (65)
                

The reactant stationary assumption \(\triangle L/L_0 \ll 1\) can be then expressed as
$$\begin{aligned} \frac{R_0}{2K_m + L_0+R_0} \ll 1 \end{aligned}$$

that is for \(L_0 \le R_0\) equivalent to \(R_0 / K_m \ll 1\). However, note that for any \(R_0 - L_0 < 2K_m\), one has
$$\begin{aligned} \frac{R_0}{2K_m + L_0+R_0} = \frac{R_0}{2K_m + 2R_0 + (L_0 - R_0)} < \frac{1}{2}. \end{aligned}$$

For values of \(\kappa \) close to \(0^+\), the neglected factor \((1-\kappa ) /\hbox {e}\) in (65) is smaller than 2 / 3, i.e., \(\triangle L / L_0 < 1/3\), regardless of the value of \(R_0/K_m\). For moderate values of \(R_0/K_m \approx \frac{1}{2}\) and \(R_0 = L_0\), the ratio \(\triangle L / L_0\) can even reach the value 0.1.
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