Skip to main content

Advertisement

Log in

Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A new deterministic model is designed and used to assess the community-wide impact of mass vaccination of new sexually active individuals on the dynamics of the oncogenic and warts-causing HPV types. Rigorous qualitative analyses of the model, which incorporates the two currently available anti-HPV vaccines, reveal that it undergoes competitive exclusion when the reproduction of one HPV risk type (low/high) exceeds unity, while that of the other HPV risk type is less than unity. For the case when the reproduction numbers of the two HPV risk types (low/high) exceed unity, the two risk types co-exist. It is shown that the sub-model with the low-risk HPV types only has at least one endemic equilibrium whenever the associated reproduction threshold exceeds unity. Furthermore, this sub-model undergoes a re-infection-induced backward bifurcation under certain conditions. In the absence of the re-infection of recovered individuals and cancer-induced mortality in males, the associated disease-free equilibrium of the full (risk-structured) model is shown to be globally asymptotically stable whenever the reproduction number of the model is less than unity (that is, the full model does not undergo backward bifurcation under this setting). It is shown, via numerical simulations, that the use of the Gardasil vaccine could lead to the effective control of HPV in the community if the coverage rate is in the range of 73–95 % (84 %). If 70 % of the new sexually active susceptible females are vaccinated with the Gardasil vaccine, additionally vaccinating 34–56 % (45 %) of the new sexually active susceptible males can lead to the effective community-wide control (or elimination) of the HPV types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • American University (2011) Sexually transmitted diseases (STDs). www.american.ca. Accessed: 15 Jan 2013

  • Alsaleh AA, Gumel AB (2014) Dynamics analysis of a vaccination model for HPV transmission. J Biol Syst. doi:10.1142/S0218339014500211

  • Brisson M, Van de Velde N, Boily MC (2011) Different population-level vaccination effectiveness for HPV types 16, 18, 6 and 11. Sex Transm Infect 87:41–43

    Article  Google Scholar 

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 62:229–243

    Article  MATH  Google Scholar 

  • Brown VL, White KAJ (2011) The role of optimal control in assessing the most cost-effective implementation of a vaccination programme: HPV as a case study. Math Biosci 231:126–134

    Article  MathSciNet  MATH  Google Scholar 

  • Canadian Cancer Society (2010) http://www.cancer.ca. Accessed 10 Sept 2012

  • Carr J (1981) Applications of centre manifold theory. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1(2):361–404

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez C, Huang W, Li J (1997) The effects of females’ susceptibility on the co-existence of multiple pathogen strains of sexually transmitted diseases. J Math Biol 35:503–522

    Article  MathSciNet  MATH  Google Scholar 

  • Centres for Disease Control and Prevention (2012) Sexually transmitted diseases (STDs). http://www.cdc.gov. Accessed 15 Nov 2012

  • de Villiers E-M, Fauquet C, Broker TR, Bernard H-V, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  Google Scholar 

  • Diekmann O, Heesterbeek J, Metz J (1990) On the definition and computation of the basic reproduction ratio \({\cal R}_{0}\) in models for infectious disease in heterogeneous population. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Doorbar J (2005) The papillomavirus life cycle. Review. Virology 32:7–15

    Google Scholar 

  • Elbasha EH, Dasbach EJ, Insinga RP (2008) A multi-type HPV transmission model. Bull Math Biol 70(8):2126–2176

    Article  MathSciNet  MATH  Google Scholar 

  • Elbasha EH, Dasbach EJ, Insinga RP (2007) Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis 13(1):28–41

    Article  Google Scholar 

  • Elbasha EH, Galvani AP (2005) Vaccination against multiple HPV types. Math Biosci 197(1):88–117

    Article  MathSciNet  MATH  Google Scholar 

  • Elbasha EH (2008) Global stability of equilibria in a two-sex HPV vaccination model. Bull Math Biol 70:894–909

    Article  MathSciNet  MATH  Google Scholar 

  • Elbasha EH, Gumel AB (2006) Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits. Bull Math Biol 68:577–614

    Article  Google Scholar 

  • Elbasha EH, Dasbach EJ (2010) Impact of vaccinating boys and men against HPV in the United States. Vaccine 28:6858–6867

    Article  Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  Google Scholar 

  • Food and Drug Administration (2010) FDA Approves new vaccine for prevention of cervical cancer. http://www.fda.gov. Accessed 5 Dec 2012

  • Franco EL, Duarte-Franco E, Ferenczy A (2001) Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ 164(7):1017–1025

    Google Scholar 

  • Friedman-Kien A (1995) Management of condylomata acuminata with alferon n injection, interferon Alfa-n3 (human leukocyte. Am J Obstet Gynecol 172:1359–1368

    Article  Google Scholar 

  • Garba SM, Gumel AB (2008) Backward bifurcations in dengue transmission dynamics. Math Biosci 215:11–25

    Article  MathSciNet  MATH  Google Scholar 

  • Gillison ML, Chaturvedi AK, Lowy DR (2008) HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer 113(10):3036–3046

    Article  Google Scholar 

  • Goldie SJ, Goldhaber-Fiebert JD, Garnett GP (2006) Chapter 18: public health policy for cervical cancer prevention; the role of decision science, economic evaluation and mathematical modelling. Vaccine 24(3):155–163

    Article  Google Scholar 

  • Goldie SJ, Kim JJ, Myers E (2006) Chapter 19: cost-effectiveness of cervical cancer screening. Vaccine 24(3):164–170

    Article  Google Scholar 

  • Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nature 2:342–350

    Google Scholar 

  • Health Canada (2010) http://www.hc-sc.gc.ca. Accessed 19 Jul 2012

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Holowaty P, Miller AB, Rohan T, To T (1999) Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst 91:252–258

    Article  Google Scholar 

  • IARC Working Group (2007) Human papillomaviruses: IARC monographs on the evaluation of the carcinogenic risks to humans, vol 90. International Agency for Research on Cancer, Lyon, France, pp 23–476

  • Insinga R, Glass A, Rush B (2004) The healthcare costs of cervical human papillomavirus-related disease. Am J Obstet Gynecol 191:114–120

    Article  Google Scholar 

  • Insinga RP (2007) The natural history of low-grade cervical intraepithelial neoplasia. Manuscript in preparation

  • Insinga RP, Dasbach EJ, Elbasha EH (2009) Epidemiologic natural history and clinical management of human papillomavirus (HPV) disease: a critical and systematic review of the literature in the development of an HPV dynamic transmission model. BMC Infect Dis 9(119):1–26

    Google Scholar 

  • Institute of Health Economics (2009) Human papillomavirus (HPV): testing in Alberta. http://www.ihe.ca. Accessed 2 Jan 2013

  • Kataja V, Syrjanen K, Mantyjarvi R et al (1989) Prospective follow-up of cervical HPV infections: life table analysis of histopathological, cytological and colposcopic data. Eur J Epidemiol 5:1–7

    Article  Google Scholar 

  • Kei K, Katsuyuki A, Satoko K, Shiro K, Tomoyuki F (2012) Therapeutic human papillomavirus (HPV) vaccines: a novel approach. Virol J 6:264–269

    Google Scholar 

  • Kim JJ, Wright TC, Goldie SJ (2002) Cost-effectiveness of alternative triage strategies for atypical squamous cells of undetermined significance. JAMA 287:2382–2390

    Article  Google Scholar 

  • Lakshmikantham V, Leela S, Martynyuk AA (1989) Stability analysis of nonlinear systems. Marcel Dekker Inc, New York

    MATH  Google Scholar 

  • Malik MT, Reimer J, Gumel AB, Elbasha EH, Mahmud SM (2013) The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer. Math Biosci Eng 10(4):1173–1205

  • Mandelblatt JS, Lawrence WF, Womack SM et al (2002) Benefits and costs of using HPV testing to screen for cervical cancer. JAMA 287:2372–2381

    Article  Google Scholar 

  • McLeod RG, Brewster JF, Gumel AB, Slonowsky DA (2006) Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Math Biosci Eng 3(3):527–544

    Article  MathSciNet  MATH  Google Scholar 

  • Mukandavire Z, Garira W (2007) Age and sex structured model for assessing the demographic impact of mother-to-child transmission of HIV/AIDS. Bull Math Biol 69(6):2061–2092

    Article  MathSciNet  MATH  Google Scholar 

  • Myers ER et al (2000) Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol 151(12):1158–1171

    Article  Google Scholar 

  • National Cancer Institute (2011) Human papillomavirus (HPV) vaccines. http://www.cancer.gov. Accessed 19 Dec 2012

  • Oxford Journals (2012) Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels. http://jnci.oxfordjournals.org. Accessed 18 Feb 2013

  • Palefsky JM (2010) Human papillomavirus-related disease in men: not just a women issue. J Adolesc Health 46:12–19

    Article  Google Scholar 

  • Parkin D, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics. Cancer J Clin 55:74–108

    Article  Google Scholar 

  • Podder CN, Gumel AB (2009) Transmission dynamics of a two-sex model for herpes simplex virus type 2. Can Math Q 17(2):339–386

    MathSciNet  MATH  Google Scholar 

  • Public Health Agency of Canada (2010) Human papillomavirus. HPV purple paper (bds). http://www.phac-aspc.gc.ca/std-mts/hpv-vph/fact-faits-eng.php. Accessed 11 Oct 2012

  • Public Health Agency of Canada (2007) Statement on human papillomavirus vaccine. http://www.publichealth.gc.ca. Accessed 5 Dec 2012

  • Saslow D et al (2012) American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol 137:516–542

    Article  Google Scholar 

  • Severini A, Jiang Y, Brassard P, Morrison H, Demers AA, Oguntuase E, Al-Rushdi M, Preston F, Ratnam S, Mao Y (2013) Type-specific prevalence of human papillomavirus in women screened for cervical cancer in Labrador. Can Int J Circumpolar Health. doi:10.3402/ijch.v72i0.19743

  • Sharomi O, Gumel AB (2011) Mathematical dynamical analysis of a sex-structured chlamydia trachomatis transmission model with time delay. Nonlinear Anal Real World Appl 12(2):837–866

    Article  MathSciNet  MATH  Google Scholar 

  • Sharomi O, Gumel AB (2009) Re-infection-induced backward bifurcation in the transmission dynamics of chlamydia trachomatis. J Math Anal Appl 356(1):96–118

    Article  MathSciNet  MATH  Google Scholar 

  • Sharomi O, Podder CN, Gumel AB, Elbasha EH, Watmough J (2007) Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Bull Math Biol 210(2):436–463

    MathSciNet  MATH  Google Scholar 

  • Sharomi O, Podder CN, Gumel AB, Song B (2008) Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment. Math Biosci Eng 5(1):145–174

    Article  MathSciNet  MATH  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, vol 41., Mathematical surveys and monographsAmerican Mathematical Society, Providence

    MATH  Google Scholar 

  • Statistics Canada (2012) www.statcan.gc.ca. Accessed 20 Jan 2013

  • Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton

    MATH  Google Scholar 

  • The GlaxoSmithKline Vaccine HPV-007 Study Group (2009) Sustained Efficacy and immunogenicity of the human papillomavirus (HPV)-16/17 ASO4-adjuvanted vaccine: analysis of a randomised placebo-controlled trial up to 6.4 years. Lancet 374:1975–1985

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

  • Villa LL, Costa RL, Petta CA, Andrade RP, Paavonen J, Iversen O-E et al (2006) High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 virus-like particle vaccine through 5 years of follow-up. Br J Cancer 95(11):1459–1466

    Article  Google Scholar 

  • Walboomers JMM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19

    Article  Google Scholar 

  • Winer RL, Kiviat NB, Hughes JP et al (2005) Development and duration of human papillomavirus lesions. After initial infection. J Infect Dis 191:731–738

    Article  Google Scholar 

  • World Health Organization (2009) Accessed 11 Jan 2013

  • Xiaodong L, Hethcote HW, van den Driessche P (1993) An epidemiological model for HIV/AIDS with proportional recruitment. Math Biosci 118:181–195

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Liu X (2009) Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment. Nonlinear Anal Real World Appl 10:565–575

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Liu X (2008) Backward Bifurcation of an Epidemic Model with Saturated Treatment Function. J. Math. Anal. Appl. 348:433–443

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

A. Gumel acknowledges, with thanks, the support, in part, of NSERC of Canada. The authors are grateful to the anonymous reviewers for their constructive comments which have enhanced the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abba B. Gumel.

Appendices

Appendices

1 Description of the Model (3)

The population of unvaccinated susceptible females (\(S_\mathrm{{f}}\)) is increased by the recruitment of new sexually active females at a rate \(\pi _\mathrm{{f}}\) (a fraction, \(1-\varphi _\mathrm{{f}}^\mathrm{{b}}-\varphi _\mathrm{{f}}^\mathrm{{q}}\), with \(0< \varphi _\mathrm{{f}}^\mathrm{{b}}+\varphi _\mathrm{{f}}^\mathrm{{q}}\le 1\), of which, is vaccinated; where \(\varphi _\mathrm{{f}}^\mathrm{{b}}\) is the fraction of unvaccinated susceptible females vaccinated with the Cervarix vaccine, and \(\varphi _\mathrm{{f}}^\mathrm{{q}}\) is the fraction vaccinated with the Gardasil vaccine). This population is further increased by the loss of infection-acquired immunity by infected females who recovered without developing cervical cancer (at a rate \(\xi _\mathrm{{f}}\)). The population is decreased by infection, following effective contacts with males infected with the high-risk and the low-risk HPV types (i.e. those in the \(E_\mathrm{{m}}^{\ell }, E_\mathrm{{m}}^\mathrm{{h}}, I_\mathrm{{m}}^{\ell }, I_\mathrm{{m}}^\mathrm{{h}}, P_\mathrm{{m}}^{\ell }\) and \(P_\mathrm{{m}}^\mathrm{{h}}\) classes), at the rates \(\lambda _\mathrm{{m}}^{\ell }\) and \(\lambda _\mathrm{{m}}^\mathrm{{h}}\) given, respectively, by

$$\begin{aligned} \lambda _\mathrm{{m}}^{\ell }&= \frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \left( \eta _\mathrm{{m}}^{\ell }E_\mathrm{{m}}^{\ell }+I_\mathrm{{m}}^{\ell }+\theta _\mathrm{{m}}^{\ell }P_\mathrm{{m}}^{\ell }\right) }{N_\mathrm{{m}}},\end{aligned}$$
(14)
$$\begin{aligned} \lambda _\mathrm{{m}}^\mathrm{{h}}&= \frac{\beta _\mathrm{{m}}^\mathrm{{h}}c_\mathrm{{f}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \left( \eta _\mathrm{{m}}^\mathrm{{h}}E_\mathrm{{m}}^\mathrm{{h}}+I_\mathrm{{m}}^\mathrm{{h}}+\theta _\mathrm{{m}}^\mathrm{{h}}P_\mathrm{{m}}^\mathrm{{h}}\right) }{N_\mathrm{{m}}}. \end{aligned}$$
(15)

In (14), \(\beta _\mathrm{{m}}^{\ell }\) is the probability of transmission of HPV infection from infected males (with the low-risk HPV types) to susceptible females per contact, and \(c_\mathrm{{f}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \) is the average number of female partners per male per unit time. Thus, \(\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \) is the effective contact rate for male-to-female transmission of the low-risk HPV types. Furthermore, \(\eta _\mathrm{{m}}^{\ell }\) (with \(0\le \eta _\mathrm{{m}}^{\ell } <1\)) is the modification parameter accounting for the assumption that exposed males with the low-risk HPV types are less infectious than symptomatically infected males with the low-risk HPV types. Similarly, in (15), \(\beta _\mathrm{{m}}^\mathrm{{h}}\) is the probability of transmission of HPV infection from infected males (with the high-risk HPV types) to susceptible females per contact, and \(\beta _\mathrm{{m}}^\mathrm{{h}}c_\mathrm{{f}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \) is the effective contact rate for male-to-female transmission of the high-risk HPV types. The parameter \(\eta _\mathrm{{m}}^\mathrm{{h}}\) (with \(0\le \eta _\mathrm{{m}}^\mathrm{{h}} <1\)) accounts for the assumption that exposed males with the high-risk HPV types are less infectious than symptomatically infected males with the high-risk HPV types, and \(\theta _\mathrm{{m}}^{\ell } (\theta _\mathrm{{m}}^\mathrm{{h}})>0\) is the modification parameter accounting for the assumption that infected males with persistent infection with the low-risk (high-risk) HPV types transmit HPV at a different rate compared to infected males in the other infected classes \((E_\mathrm{{m}}^{\ell }, I_\mathrm{{m}}^{\ell } (E_\mathrm{{m}}^\mathrm{{h}}, I_\mathrm{{m}}^\mathrm{{h}}))\). The population of unvaccinated susceptible females is further decreased by natural death (at a rate \(\mu _\mathrm{{f}}\); it is assumed that females in all epidemiological compartments suffer natural death at the rate \(\mu _\mathrm{{f}}\)). Standard incidence formulation is used in (14) and (15), where the contact rate is assumed to be constant, unlike in the case of the mass action incidence (where the contact rate increases linearly with the total size of the population Hethcote 2000; Lakshmikantham et al. 1989). Thus,

$$\begin{aligned} \frac{\mathrm{{d}}S_\mathrm{{f}}}{\mathrm{{d}}t} = (1-\varphi _\mathrm{{f}}^\mathrm{{b}}-\varphi _\mathrm{{f}}^\mathrm{{q}})\pi _\mathrm{{f}}+\xi _\mathrm{{f}}R_\mathrm{{f}}- \left( \lambda _\mathrm{{m}}^{\ell }+\lambda _\mathrm{{m}}^\mathrm{{h}}\right) S_\mathrm{{f}}-\mu _\mathrm{{f}}S_\mathrm{{f}}. \end{aligned}$$
(16)

The population of new sexually active susceptible females vaccinated with the bivalent Cervarix vaccine (\(V_\mathrm{{f}}^\mathrm{{b}}\)) is generated by the vaccination of a fraction, \(\varphi _\mathrm{{f}}^\mathrm{{b}}\), of unvaccinated susceptible females with the Cervarix vaccine (at the rate \(\pi _\mathrm{{f}}\varphi _\mathrm{{f}}^\mathrm{{b}}\)). It is decreased by HPV infection, following effective contacts with males infected with high-risk HPV types (at the reduced rate \((1-\varepsilon _{b})\lambda _\mathrm{{m}}^\mathrm{{h}}\), where \(0<\varepsilon _{b}\le 1\) represents the efficacy of the Cervarix vaccine against infection with the high-risk HPV types) and males infected with the low-risk HPV types (at the rate \(\lambda _\mathrm{{m}}^{\ell }\); it should be emphasized that the Cervarix vaccine has no efficacy against the low-risk HPV types, HPV-6 and -11 Health Canada 2010; Public Health Agency of Canada 2010, 2007). This population is decreased by natural death. Since there is currently no evidence to the contrary, it is assumed that this vaccine (as well as Gardasil) does not wane Canadian Cancer Society 2010; Centres for Disease Control and Prevention 2012; Health Canada 2010; Public Health Agency of Canada 2010, 2007. Hence,

$$\begin{aligned} \frac{\mathrm{{d}}V_\mathrm{{f}}^\mathrm{{b}}}{\mathrm{{d}}t} = \varphi _\mathrm{{f}}^\mathrm{{b}} \pi _\mathrm{{f}}-(1-\varepsilon _{b})\lambda _\mathrm{{m}}^\mathrm{{h}}V_\mathrm{{f}}^\mathrm{{b}}- \lambda _\mathrm{{m}}^{\ell }V_\mathrm{{f}}^\mathrm{{b}}-\mu _\mathrm{{f}}V_\mathrm{{f}}^\mathrm{{b}}. \end{aligned}$$
(17)

The population of new sexually active susceptible females vaccinated with the quadrivalent Gardasil vaccine (\(V_\mathrm{{f}}^\mathrm{{q}}\)) is generated by the vaccination of a fraction, \(\varphi _\mathrm{{f}}^\mathrm{{q}}\), of unvaccinated susceptible females with the Gardasil vaccine (at the rate \(\pi _\mathrm{{f}}\varphi _\mathrm{{f}}^\mathrm{{q}}\)). It is decreased by HPV infection, following effective contacts with males infected with the low- and high-risk HPV types (at a reduced rate \((1-\varepsilon _{q})\left( \lambda _\mathrm{{m}}^{\ell }+\lambda _\mathrm{{m}}^\mathrm{{h}}\right) \), where \(0<\varepsilon _{q}\le 1\) represents the efficacy of Gardasil vaccine against infection with HPV-6, -11, -16 and -18). This population is decreased by natural death. Thus,

$$\begin{aligned} \frac{\mathrm{{d}}V_\mathrm{{f}}^\mathrm{{q}}}{\mathrm{{d}}t} = \varphi _\mathrm{{f}}^\mathrm{{q}}\pi _\mathrm{{f}}-(1-\varepsilon _{q})\left( \lambda _\mathrm{{m}}^\mathrm{{h}}+ \lambda _\mathrm{{m}}^{\ell }\right) V_\mathrm{{f}}^\mathrm{{q}}-\mu _\mathrm{{f}}V_\mathrm{{f}}^\mathrm{{q}}. \end{aligned}$$
(18)

The population of exposed females with the low-risk (high-risk) HPV types (\(E_\mathrm{{f}}^{\ell } (E_\mathrm{{f}}^\mathrm{{h}})\)) is generated by the infection of unvaccinated and vaccinated susceptible females with the low-risk HPV types (at the rate \(\lambda _\mathrm{{m}}^{\ell } (\lambda _\mathrm{{m}}^\mathrm{{h}})\)). This population is further increased by the re-infection of recovered females with the low-risk (high-risk) HPV types (at a rate \(\rho _\mathrm{{f}}^{\ell }\lambda _\mathrm{{m}}^{\ell } (\rho _\mathrm{{f}}^\mathrm{{h}}\lambda _\mathrm{{m}}^\mathrm{{h}})\), where \(0\le \rho _\mathrm{{f}}^{\ell } ( \rho _\mathrm{{f}}^\mathrm{{h}})<1\) accounts for the assumption that the re-infection of recovered females with low-risk (high-risk) HPV types occurs at a rate lower than the rate for primary infection of susceptible females). Exposed females develop clinical symptoms of the low-risk (high-risk) HPV types (at a rate \(\sigma _\mathrm{{f}}^{\ell } (\sigma _\mathrm{{f}}^\mathrm{{h}})\)) and suffer natural death. Thus,

$$\begin{aligned} \frac{\mathrm{{d}}E_\mathrm{{f}}^{\ell }}{\mathrm{{d}}t}&= \left[ S_\mathrm{{f}}+V_{b}+(1-\varepsilon _{q})V_{q}\right] \lambda _\mathrm{{m}}^{\ell }+\rho _\mathrm{{f}}^{\ell }\lambda _\mathrm{{m}}^{\ell }R_\mathrm{{f}}-(\sigma _\mathrm{{f}}^{\ell }+\mu _\mathrm{{f}})E_\mathrm{{f}}^{\ell },\nonumber \\ \frac{\mathrm{{d}}E_\mathrm{{f}}^\mathrm{{h}}}{\mathrm{{d}}t}&= \left[ S_\mathrm{{f}}+(1-\varepsilon _{b})V_{b}+(1-\varepsilon _{q})V_{q}\right] \lambda _\mathrm{{m}}^\mathrm{{h}}+\rho _\mathrm{{f}}^\mathrm{{h}} \lambda _\mathrm{{m}}^\mathrm{{h}}R_\mathrm{{f}}-(\sigma _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}})E_\mathrm{{f}}^\mathrm{{h}}. \end{aligned}$$
(19)

The population of infected females with clinical symptoms of the low-risk (high-risk) HPV types (\(I_\mathrm{{f}}^{\ell } (I_\mathrm{{f}}^\mathrm{{h}})\)) is generated at the rate \(\sigma _\mathrm{{f}}^{\ell } (\sigma _\mathrm{{f}}^\mathrm{{h}})\). This population is decreased by recovery (at a rate \(\psi _\mathrm{{f}}^{\ell } (\psi _\mathrm{{f}}^\mathrm{{h}})\)) and natural death. Hence,

$$\begin{aligned} \frac{\mathrm{{d}}I_\mathrm{{f}}^{\ell }}{\mathrm{{d}}t}&= \sigma _\mathrm{{f}}^{\ell }E_\mathrm{{f}}^{\ell }-(\psi _\mathrm{{f}}^{\ell }+\mu _\mathrm{{f}})I_\mathrm{{f}}^{\ell },\nonumber \\ \frac{\mathrm{{d}}I_\mathrm{{f}}^\mathrm{{h}}}{\mathrm{{d}}t}&= \sigma _\mathrm{{f}}^\mathrm{{h}}E_\mathrm{{f}}^\mathrm{{h}}-(\psi _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}})I_\mathrm{{f}}^\mathrm{{h}}. \end{aligned}$$
(20)

The population of females with persistent infection with the low-risk HPV types (\(P_\mathrm{{f}}^{\ell }\)) is generated by the development of persistent infection, with the low-risk HPV types, by symptomatic females with the low-risk HPV types (at a rate \((1-r_\mathrm{{f}}^{\ell })\psi _\mathrm{{f}}^{\ell }\), where \(0<r_\mathrm{{f}}^{\ell }\le 1\) is the fraction of symptomatic females with the low-risk HPV types, who recovered from HPV infection without developing genital warts; it is assumed that individuals infected with the low-risk HPV types do not progress to the CIN stages and/or develop cancer Canadian Cancer Society 2010; Centres for Disease Control and Prevention 2012; Public Health Agency of Canada 2010, 2007). Females with persistent infection with the low-risk HPV types move out of this epidemiological class (either through recovery or development of genital warts) at a rate \(\alpha _\mathrm{{f}}^{\ell }\), and suffer natural death. Thus,

$$\begin{aligned} \frac{\mathrm{{d}}P_\mathrm{{f}}^{\ell }}{\mathrm{{d}}t} = (1-r_\mathrm{{f}}^{\ell })\psi _\mathrm{{f}}^{\ell }I_\mathrm{{f}}^{\ell }-(\alpha _\mathrm{{f}}^{\ell }+\mu _\mathrm{{f}})P_\mathrm{{f}}^{\ell }. \end{aligned}$$
(21)

The population of females with persistent infection with the high-risk HPV types (\(P_\mathrm{{f}}^\mathrm{{h}}\)) is generated at a rate \((1-r_\mathrm{{f}}^\mathrm{{h}})\psi _\mathrm{{f}}^\mathrm{{h}}\), where \(0<r_\mathrm{{f}}^\mathrm{{h}}\le 1\) is the fraction of symptomatic females with the high-risk HPV types, who recovered from HPV without progressing to the low-grade CIN1 stage, and by a fraction, \(1-\left( s_{1\mathrm{{m}}}+s_{2\mathrm{{f}}}\right) \), of infected females in the high-grade CIN2/3 stage, who develop persistent infection (at a rate \(\left[ 1-\left( s_{1\mathrm{{m}}}+s_{2\mathrm{{f}}}\right) \right] z_\mathrm{{f}}\), where \(s_{1\mathrm{{m}}}\) and \(s_{2\mathrm{{f}}}\), with \(0\le s_{1\mathrm{{m}}}+s_{2\mathrm{{f}}} \le 1\), are the fractions of infected females in the high-grade CIN2/3 stage, who naturally recovered from HPV infection, and of infected females in the high-grade CIN2/3 stage, who revert to the low-grade CIN1 stage, respectively). Females with persistent infection with the high-risk HPV types move out of this epidemiological class (either through recovery or development of pre-cancerous CIN lesions) at a rate \(\alpha _\mathrm{{f}}^\mathrm{{h}}\), and suffer natural death. Hence,

$$\begin{aligned} \frac{\mathrm{{d}}P_\mathrm{{f}}^\mathrm{{h}}}{\mathrm{{d}}t} = (1-r_\mathrm{{f}}^\mathrm{{h}}) \psi _\mathrm{{f}}^\mathrm{{h}}I_\mathrm{{f}}^\mathrm{{h}}+\left[ 1-\left( s_{1\mathrm{{m}}}+s_{2\mathrm{{f}}}\right) \right] z_\mathrm{{f}}G_\mathrm{{fh}}-(\alpha _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}})P_\mathrm{{f}}^\mathrm{{h}}. \end{aligned}$$

The population of females with genital warts (\(W_\mathrm{{f}}\)) is generated when infected females with persistent infection with the low-risk HPV types develop genital warts (at a rate \((1-k_\mathrm{{f}}^{\ell })\alpha _\mathrm{{f}}^{\ell }\), where \(0<k_\mathrm{{f}}^{\ell }\le 1\) is the fraction of infected females with persistent low-risk HPV types, who recovered from HPV infection). Since genital warts do not cause cervical cancer (or any other type of cancer Public Health Agency of Canada 2010; World Health Organization 2009), it is assumed that genital warts do not cause death in females and males. This population decreases due to recovery (at a rate \(n_\mathrm{{f}}\)) and natural death, so that

$$\begin{aligned} \frac{\mathrm{{d}}W_\mathrm{{f}}}{\mathrm{{d}}t}=(1-k_\mathrm{{f}}^{\ell })\alpha _\mathrm{{f}}^{\ell }P_\mathrm{{f}}^{\ell }-\left( n_\mathrm{{f}}+\mu _\mathrm{{f}}\right) W_\mathrm{{f}}. \end{aligned}$$
(22)

The population of females with the low-grade CIN1 (\(G_\mathrm{{f}\ell }\)) is generated when infected females with persistent infection with the high-risk HPV types develop pre-cancerous CIN lesions (at a rate \((1-k_\mathrm{{f}}^\mathrm{{h}})\alpha _\mathrm{{f}}^\mathrm{{h}}\), where \(0<k_\mathrm{{f}}^\mathrm{{h}}\le 1\) is the fraction of infected females with persistent infection with the high-risk HPV types, who recovered from HPV infection). This population is further increased by the reversion (or regression) of individuals in the high-grade CIN2/3 stage into the low-grade CIN1 stage (at a rate \(s_{2\mathrm{{f}}}z_\mathrm{{f}}\)). Individuals move out of this class at a rate \(u_\mathrm{{f}}\) (due to progression to the high-grade CIN2/3 stage Elbasha et al. 2007; Elbasha and Dasbach 2010; Malik et al. 2013; World Health Organization 2009, at a rate \((1-d_\mathrm{{f}})u_\mathrm{{f}}\), or recovery, at a rate \(d_\mathrm{{f}}u_\mathrm{{f}}\)). It is assumed that individuals in the CIN stages do not suffer disease-induced death (until they develop cervical cancer). Thus,

$$\begin{aligned} \frac{\mathrm{{d}}G_\mathrm{{f}\ell }}{\mathrm{{d}}t}=(1-k_\mathrm{{f}}^\mathrm{{h}})\alpha _\mathrm{{f}}^\mathrm{{h}}P_\mathrm{{f}}^\mathrm{{h}}+s_{2\mathrm{{f}}}z_\mathrm{{f}}G_\mathrm{{fh}}-\left( u_\mathrm{{f}}+\mu _\mathrm{{f}}\right) G_\mathrm{{f}\ell }. \end{aligned}$$
(23)

The population of females in the high-grade CIN2/3 stage (\(G_\mathrm{{fh}}\)) is generated by the progression of infected females with low-grade CIN1 (at the rate \((1-d_\mathrm{{f}})u_\mathrm{{f}}\), where \(0\le d_\mathrm{{f}} \le 1\) is the fraction of infected females in the low-grade CIN1 stage, who naturally recovered from HPV infection). Transition out of this class occurs at a rate \(z_\mathrm{{f}}\) (where a fraction, \(s_{1\mathrm{{m}}}z_\mathrm{{f}}\), recovers; another fraction, \(s_{2\mathrm{{f}}}z_\mathrm{{f}}\), reverts to the low-grade CIN1 stage and the remaining fraction, \(1-(s_{1\mathrm{{m}}}+s_{2\mathrm{{f}}})\), develops persistent infection). This population is decreased by the development of cervical cancer (at a rate \(\omega _\mathrm{{f}}\)) and natural death. Hence,

$$\begin{aligned} \frac{\mathrm{{d}}G_\mathrm{{fh}}}{\mathrm{{d}}t}=(1-d_\mathrm{{f}})u_\mathrm{{f}}G_\mathrm{{f}\ell }-\left( z_\mathrm{{f}}+\omega _\mathrm{{f}}+\mu _\mathrm{{f}}\right) G_\mathrm{{fh}}. \end{aligned}$$
(24)

The population of females with cervical cancer (\(C_\mathrm{{f}}^\mathrm{{c}}\)) is generated by the development of cervical cancer by infected females in the high-grade CIN2/3 stage (at the rate \(\omega _\mathrm{{f}}\)). This population decreases due to recovery (at a rate \(\gamma _\mathrm{{f}}\)), natural death and cancer-induced death (at a rate \(\delta _\mathrm{{f}}\)), so that

$$\begin{aligned} \frac{\mathrm{{d}}C_\mathrm{{f}}^\mathrm{{c}}}{\mathrm{{d}}t} = \omega _\mathrm{{f}}G_\mathrm{{fh}}-(\gamma _\mathrm{{f}}+\mu _\mathrm{{f}}+\delta _\mathrm{{f}})C_\mathrm{{f}}^\mathrm{{c}}. \end{aligned}$$
(25)

The population of infected females who recovered from cervical cancer (\(R_\mathrm{{f}}^\mathrm{{c}}\)) is generated at the rate \(\gamma _\mathrm{{f}}\), and decreases by natural death. As in Malik et al. (2013), it is assumed that individuals in this class do not acquire HPV infection again (since these individuals require treatment/surgery, which, typically, result in the removal or damage to the cervix and some other normal tissues around it National Cancer Institute 2011). Thus,

$$\begin{aligned} \frac{\mathrm{{d}}R_\mathrm{{f}}^\mathrm{{c}}}{\mathrm{{d}}t} = \gamma _\mathrm{{f}}C_\mathrm{{f}}^\mathrm{{c}}-\mu _\mathrm{{f}}R_\mathrm{{f}}^\mathrm{{c}}. \end{aligned}$$
(26)

The population of infected females who recovered from HPV infection (and genital warts) without developing cervical cancer (\(R_\mathrm{{f}}\)) is generated at the rates \(r_\mathrm{{f}}^{\ell }\psi _\mathrm{{f}}^{\ell }, r_\mathrm{{f}}^{\ell }{h}\psi _\mathrm{{f}}^\mathrm{{h}}, k_\mathrm{{f}}^{\ell }\alpha _\mathrm{{f}}^{\ell }, k_\mathrm{{f}}^\mathrm{{h}}\alpha _\mathrm{{f}}^\mathrm{{h}}, n_\mathrm{{f}}, d_\mathrm{{f}}u_\mathrm{{f}}\) and \(s_{1\mathrm{{m}}}z_\mathrm{{f}}\), respectively. Recovered females acquire re-infection at the rates \(\rho _\mathrm{{f}}^{\ell }\lambda _\mathrm{{m}}^{\ell }\) and \(\rho _\mathrm{{f}}^\mathrm{{h}}\lambda _\mathrm{{m}}^\mathrm{{h}}\). This population is further decreased by the loss of infection-acquired immunity (at the rate \(\xi _\mathrm{{f}}\)) and natural death. This gives

$$\begin{aligned} \frac{\mathrm{{d}}R_\mathrm{{f}}}{\mathrm{{d}}t}&= r_\mathrm{{f}}^{\ell }\psi _\mathrm{{f}}^{\ell }I_\mathrm{{f}}^{\ell }+r_\mathrm{{f}}^\mathrm{{h}}\psi _\mathrm{{f}}^\mathrm{{h}}I_\mathrm{{f}}^\mathrm{{h}}+k_\mathrm{{f}}^{\ell }\alpha _\mathrm{{f}}^{\ell }P_\mathrm{{f}}^{\ell }+k_\mathrm{{f}}^\mathrm{{h}}\alpha _\mathrm{{f}}^\mathrm{{h}}P_\mathrm{{f}}^\mathrm{{h}}+n_\mathrm{{f}}W_\mathrm{{f}}+d_\mathrm{{f}}u_\mathrm{{f}}G_\mathrm{{f}\ell }+s_{1\mathrm{{m}}}z_\mathrm{{f}}G_\mathrm{{fh}}\nonumber \\&-\left( \rho _\mathrm{{f}}^\mathrm{{h}}\lambda _\mathrm{{m}}^\mathrm{{h}}+\rho _\mathrm{{f}}^{\ell }\lambda _\mathrm{{m}}^{\ell }\right) R_\mathrm{{f}}-\left( \xi _\mathrm{{f}}+\mu _\mathrm{{f}}\right) R_\mathrm{{f}}. \end{aligned}$$
(27)

The population of unvaccinated susceptible males (\(S_\mathrm{{m}}\)) is generated by the recruitment of new sexually active males at a rate \(\pi _\mathrm{{m}}\) (a fraction, \(\varphi _\mathrm{{m}}^\mathrm{{q}}\), of which, is vaccinated with the Gardasil vaccine; it is assumed that males are not vaccinated with the Cervarix vaccine Public Health Agency of Canada 2010, 2007; World Health Organization 2009). It is further increased by the loss of infection-acquired immunity by recovered males (at a rate \(\xi _\mathrm{{m}}\)). This population is diminished by infection, following effective contacts with infected females (with both the low-risk and high-risk HPV types), at rates \(\lambda _\mathrm{{f}}^{\ell }\) and \(\lambda _\mathrm{{f}}^\mathrm{{h}}\), where

$$\begin{aligned} \lambda _\mathrm{{f}}^{\ell }&= \frac{\beta _\mathrm{{f}}^{\ell }c_\mathrm{{m}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \left( \eta _\mathrm{{f}}^{\ell }E_\mathrm{{f}}^{\ell }+I_\mathrm{{f}}^{\ell }+\theta _\mathrm{{f}}^{\ell }P_\mathrm{{f}}^{\ell }\right) }{N_\mathrm{{f}}},\end{aligned}$$
(28)
$$\begin{aligned} \lambda _\mathrm{{f}}^\mathrm{{h}}&= \frac{\beta _\mathrm{{f}}^\mathrm{{h}}c_\mathrm{{m}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \left( \eta _\mathrm{{f}}^\mathrm{{h}}E_\mathrm{{f}}^\mathrm{{h}}+I_\mathrm{{f}}^\mathrm{{h}}+\theta _\mathrm{{f}}^\mathrm{{h}}P_\mathrm{{f}}^\mathrm{{h}}\right) }{N_\mathrm{{f}}}. \end{aligned}$$
(29)

In (28) and (29), \(\beta _\mathrm{{f}}^{\ell } (\beta _\mathrm{{f}}^\mathrm{{h}})\) is the probability of transmission of HPV infection from infected females with the low-risk (high-risk) HPV types to males per contact, and \(c_\mathrm{{m}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \) is the average number of male partners per female per unit time. Furthermore, \(\eta _\mathrm{{f}}^{\ell }\) (\(\eta _\mathrm{{f}}^\mathrm{{h}}\)) (with \(0\le \eta _\mathrm{{f}}^{\ell } (\eta _\mathrm{{f}}^\mathrm{{h}})<1\)) is the modification parameter accounting for the assumption that exposed females with the low-risk (high-risk) HPV types (i.e. those in the \(E_\mathrm{{f}}^{\ell } (E_\mathrm{{f}}^\mathrm{{h}})\) class) are less infectious than symptomatically infected females (i.e. those in the \(I_\mathrm{{f}}^{\ell } (I_\mathrm{{f}}^\mathrm{{h}})\) class), and \(\theta _\mathrm{{f}}^{\ell } (\theta _\mathrm{{f}}^\mathrm{{h}})>0\) is the modification parameter accounting for the assumption that infected females with persistent infection with the low-risk (high-risk) HPV types transmit HPV at a different rate compared to infected females in the \(E_\mathrm{{f}}^{\ell }, I_\mathrm{{f}}^{\ell } (E_\mathrm{{f}}^\mathrm{{h}}, I_\mathrm{{f}}^\mathrm{{h}})\) classes. This population is further decreased by natural death (at a rate \(\mu _\mathrm{{m}}\), it is assumed that males in all epidemiological compartments suffer natural death at this rate, \(\mu _\mathrm{{m}}\)). Thus,

$$\begin{aligned} \frac{\mathrm{{d}}S_\mathrm{{m}}}{\mathrm{{d}}t} = \left( 1-\varphi _\mathrm{{m}}^\mathrm{{q}}\right) \pi _\mathrm{{m}}+\xi _\mathrm{{m}}R_\mathrm{{m}}- \left( \lambda _\mathrm{{f}}^\mathrm{{h}}+\lambda _\mathrm{{f}}^{\ell }\right) S_\mathrm{{m}}-\mu _\mathrm{{m}}S_\mathrm{{m}}. \end{aligned}$$
(30)

The population of new sexually active susceptible males vaccinated with the Gardasil vaccine (\(V_\mathrm{{m}}^\mathrm{{q}}\)) is generated by the vaccination of the fraction, \(\varphi _\mathrm{{m}}^\mathrm{{q}}\), of unvaccinated susceptible males (at the rate \(\pi _\mathrm{{m}}\varphi _\mathrm{{m}}^\mathrm{{q}}\)). It is decreased by HPV infection, following effective contacts with females infected with the high-risk HPV types (at a reduced rate \((1-\varepsilon _{q})\lambda _\mathrm{{f}}^\mathrm{{h}}\), where \(0<\varepsilon _{q} \le 1\) is the efficacy of the Gardasil vaccine) and females infected with the low-risk HPV types (at the rate \((1-\varepsilon _{q})\lambda _\mathrm{{f}}^{\ell })\). This population is reduced by natural death. Hence,

$$\begin{aligned} \frac{\mathrm{{d}}V_\mathrm{{m}}^\mathrm{{q}}}{\mathrm{{d}}t}= \varphi _\mathrm{{m}}^\mathrm{{q}} \pi _\mathrm{{m}}-(1-\varepsilon _{q})\left( \lambda _\mathrm{{f}}^\mathrm{{h}}+ \lambda _\mathrm{{f}}^{\ell }\right) V_\mathrm{{m}}^\mathrm{{q}}-\mu _\mathrm{{m}}V_\mathrm{{m}}^\mathrm{{q}}. \end{aligned}$$
(31)

The population of exposed males with the low-risk (high-risk) HPV types (\(E_\mathrm{{m}}^{\ell } (E_\mathrm{{m}}^\mathrm{{h}})\)) is generated by the infection of unvaccinated and vaccinated susceptible males with the low-risk (high-risk) HPV types (at the rate \(\lambda _\mathrm{{f}}^{\ell } (\lambda _\mathrm{{f}}^\mathrm{{h}})\)). This population is further increased by the re-infection of recovered males (at a rate \(\rho _\mathrm{{m}}^{\ell }\lambda _\mathrm{{f}}^{\ell } (\rho _\mathrm{{m}}^\mathrm{{h}}\lambda _\mathrm{{f}}^\mathrm{{h}})\), where \(0\le \rho _\mathrm{{m}}^{\ell } (\rho _\mathrm{{m}}^\mathrm{{h}})<1\) also accounts for the assumption that re-infection of recovered females occurs at a rate lower than the primary infection). Exposed males develop clinical symptoms of the low-risk (high-risk) HPV types (at a rate \(\sigma _\mathrm{{m}}^{\ell } (\sigma _\mathrm{{m}}^\mathrm{{h}})\)) and suffer natural death. Hence,

$$\begin{aligned} \frac{\mathrm{{d}}E_\mathrm{{m}}^{\ell }}{\mathrm{{d}}t}&= \left[ S_\mathrm{{m}}+(1-\varepsilon _{q})V_\mathrm{{m}}^\mathrm{{q}}\right] \lambda _\mathrm{{f}}^{\ell }+\rho _\mathrm{{m}}^{\ell }\lambda _\mathrm{{f}}^{\ell }R_\mathrm{{m}}-(\sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}})E_\mathrm{{m}}^{\ell },\end{aligned}$$
(32)
$$\begin{aligned} \frac{\mathrm{{d}}E_\mathrm{{m}}^\mathrm{{h}}}{\mathrm{{d}}t}&= \left[ S_\mathrm{{m}}+(1-\varepsilon _{q})V_\mathrm{{m}}^\mathrm{{q}}\right] \lambda _\mathrm{{f}}^\mathrm{{h}}+\rho _\mathrm{{m}}^\mathrm{{h}}\lambda _\mathrm{{f}}^\mathrm{{h}}R_\mathrm{{m}}-(\sigma _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}})E_\mathrm{{m}}^\mathrm{{h}}. \end{aligned}$$
(33)

The population of infected males with clinical symptoms of the low-risk (high-risk) HPV types (\(I_\mathrm{{m}}^{\ell } (I_\mathrm{{m}}^\mathrm{{h}})\)) is generated at the rate \(\sigma _\mathrm{{m}}^{\ell } (\sigma _\mathrm{{m}}^\mathrm{{h}})\). It is reduced by recovery (at a rate \(\psi _\mathrm{{m}}^{\ell } (\psi _\mathrm{{m}}^\mathrm{{h}})\)) and natural death. Thus,

$$\begin{aligned} \frac{\mathrm{{d}}I_\mathrm{{m}}^{\ell }}{\mathrm{{d}}t}&= \sigma _\mathrm{{m}}^{\ell }E_\mathrm{{m}}^{\ell }-(\psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}})I_\mathrm{{m}}^{\ell },\end{aligned}$$
(34)
$$\begin{aligned} \frac{\mathrm{{d}}I_\mathrm{{m}}^\mathrm{{h}}}{\mathrm{{d}}t}&= \sigma _\mathrm{{m}}^\mathrm{{h}}E_\mathrm{{m}}^\mathrm{{h}}-(\psi _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}})I_\mathrm{{m}}^\mathrm{{h}}. \end{aligned}$$
(35)

The population of males with persistent infection with the low-risk HPV types (\(P_\mathrm{{m}}^{\ell }\)) is generated by the development of persistent infection, with the low-risk HPV types, by symptomatic males with the low-risk HPV types (at a rate \((1-r_\mathrm{{m}}^{\ell })\psi _\mathrm{{m}}^{\ell }\), where \(0<r_\mathrm{{m}}^{\ell }\le 1\) is the fraction of symptomatic males with the low-risk HPV types, who recovered from HPV infection without developing genital warts). Males with persistent infection with the low-risk HPV types move out of this epidemiological class (either through recovery or development of genital warts) at a rate \(\alpha _\mathrm{{m}}^{\ell }\), and suffer natural death. Thus,

$$\begin{aligned} \frac{\mathrm{{d}}P_\mathrm{{m}}^{\ell }}{\mathrm{{d}}t} = (1-r_\mathrm{{m}}^{\ell })\psi _\mathrm{{m}}^{\ell }I_\mathrm{{m}}^{\ell }-(\alpha _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}})P_\mathrm{{m}}^{\ell }. \end{aligned}$$
(36)

The population of males with persistent infection with the high-risk HPV types (\(P_\mathrm{{m}}^\mathrm{{h}}\)) is generated at a rate \((1-r_\mathrm{{m}}^\mathrm{{h}})\psi _\mathrm{{m}}^\mathrm{{h}}\), where \(0<r_\mathrm{{m}}^\mathrm{{h}}\le 1\) is the fraction of symptomatic males with the high-risk HPV types, who recovered from HPV without progressing to the low-grade INM1 stage, and by a fraction, \(1-\left( s_{1\mathrm{{m}}}+s_{2\mathrm{{m}}}\right) \), of infected males in the high-grade INM2/3 stage, who develop persistent infection (at a rate \(\left[ 1-\left( s_{1\mathrm{{m}}}+s_{2\mathrm{{m}}}\right) \right] z_\mathrm{{m}}\), where \(s_{1\mathrm{{m}}}\) and \(s_{2\mathrm{{m}}}\), with \(0\le s_{1\mathrm{{m}}}+s_{2\mathrm{{m}}}\le 1\), are the fractions of infected males in the high-grade INM2/3 stage, who naturally recovered from HPV infection, and of infected males in the high-grade INM2/3 stage that reverts to the low-grade INM1 stage, respectively). Males with persistent infection with the high-risk HPV types move out of this epidemiological class (either through recovery or development of pre-cancerous lesions) at a rate \(\alpha _\mathrm{{m}}^\mathrm{{h}}\), and suffer natural death. Hence,

$$\begin{aligned} \frac{\mathrm{{d}}P_\mathrm{{m}}^\mathrm{{h}}}{\mathrm{{d}}t} = (1-r_\mathrm{{m}}^\mathrm{{h}}) \psi _\mathrm{{m}}^\mathrm{{h}}I_\mathrm{{m}}^\mathrm{{h}}+\left[ 1-\left( s_{1\mathrm{{m}}}+s_{2\mathrm{{m}}}\right) \right] z_\mathrm{{m}}G_\mathrm{{mh}} -(\alpha _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}})P_\mathrm{{m}}^\mathrm{{h}}. \end{aligned}$$

The population of males with genital warts (\(W_\mathrm{{m}}\)) is generated when infected males with persistent infection with the low-risk HPV types develop genital warts (at a rate \((1-k_\mathrm{{m}}^{\ell })\alpha _\mathrm{{m}}^{\ell }\), where \(0<k_\mathrm{{m}}^{\ell }\le 1\) is the fraction of infected males with low-risk persistent HPV types, who recovered from HPV infection). This population decreases due to recovery (at a rate \(n_\mathrm{{m}}\)) and natural death, so that

$$\begin{aligned} \frac{\mathrm{{d}}W_\mathrm{{m}}}{\mathrm{{d}}t}=(1-k_\mathrm{{m}}^{\ell })\alpha _\mathrm{{m}}^{\ell }P_\mathrm{{m}}^{\ell }-\left( n_\mathrm{{m}}+\mu _\mathrm{{m}}\right) W_\mathrm{{m}}. \end{aligned}$$
(37)

The population of males in the low-grade HPV-related INM1 stage (\(G_\mathrm{{m}\ell }\)) is generated when infected males with persistent infection with the high-risk HPV types develop pre-cancerous lesions (at a rate \((1-k_\mathrm{{m}}^\mathrm{{h}})\alpha _\mathrm{{m}}^\mathrm{{h}}\), where \(0<k_\mathrm{{m}}^\mathrm{{h}}\le 1\) is the fraction of infected males with persistent infection with the high-risk HPV types, who recovered from HPV infection). This population is further increased by the reversion of individuals in the high-grade HPV-related INM2/3 stage (at a rate \(s_{2\mathrm{{m}}}z_\mathrm{{m}}\)). Individuals move out of this class at a rate \(u_\mathrm{{m}}\) (due to progression to the high-grade INM2/3 stage, at a rate \((1-d_\mathrm{{m}})u_\mathrm{{m}}\), or recovery, at a rate \(d_\mathrm{{m}}u_\mathrm{{m}}\)). It is assumed that individuals in INM stages do not suffer disease-induced death (until they develop HPV-related cancer). Thus,

$$\begin{aligned} \frac{\mathrm{{d}}G_\mathrm{{m}\ell }}{\mathrm{{d}}t}=(1-k_\mathrm{{m}}^\mathrm{{h}})\alpha _\mathrm{{m}}^\mathrm{{h}}P_\mathrm{{m}}^\mathrm{{h}}+s_{2\mathrm{{m}}}z_\mathrm{{m}}G_\mathrm{{mh}}-\left( u_\mathrm{{m}}+\mu _\mathrm{{m}}\right) G_\mathrm{{ml}}. \end{aligned}$$
(38)

The population of males in the high-grade HPV-related INM2/3 stage (\(G_\mathrm{{mh}}\)) is generated by the progression of infected males in the low-grade HPV-related INM1 stage (at the rate \((1-d_\mathrm{{m}})u_\mathrm{{m}}\), where \(0\le d_\mathrm{{m}} \le 1\) is the fraction of infected males in the low-grade INM1 stage, who naturally recovered from HPV infection). Transition out of this class occurs at a rate \(z_\mathrm{{m}}\) (where a fraction, \(s_{1\mathrm{{m}}}z_\mathrm{{m}}\), recovers; another fraction, \(s_{2\mathrm{{m}}}z_\mathrm{{m}}\), reverts to the low-grade INM1 stage, and the remaining fraction, \(1-(s_{1\mathrm{{m}}}+s_{2\mathrm{{m}}})\), develops persistent infection). This population is decreased by the development of HPV-related cancer (at a rate \(\omega _\mathrm{{m}}\)) and natural death. Hence,

$$\begin{aligned} \frac{\mathrm{{d}}G_\mathrm{{mh}}}{\mathrm{{d}}t}=(1-d_\mathrm{{m}})u_\mathrm{{m}}G_\mathrm{{m}\ell }-\left( z_\mathrm{{m}}+\omega _\mathrm{{m}}+\mu _\mathrm{{m}}\right) G_\mathrm{{mh}}. \end{aligned}$$
(39)

The population of males with HPV-related cancers (\(C_\mathrm{{m}}^\mathrm{{c}}\)) is generated by the development of HPV-related cancers by infected males in the high-grade IN2/3 stage (at the rate \(\omega _\mathrm{{m}}\)). This population decreases due to recovery (at a rate \(\gamma _\mathrm{{m}}\)), natural death and cancer-induced death (at a rate \(\delta _\mathrm{{m}}\)), so that

$$\begin{aligned} \frac{\mathrm{{d}}C_\mathrm{{m}}^\mathrm{{r}}}{\mathrm{{d}}t} = \omega _\mathrm{{m}}G_\mathrm{{mh}}-(\gamma _\mathrm{{m}}+\mu _\mathrm{{m}}+\delta _\mathrm{{m}})C_\mathrm{{m}}^\mathrm{{r}}. \end{aligned}$$
(40)

The population of males who recovered from HPV-related cancers (\(R_\mathrm{{m}}^\mathrm{{c}}\)) is generated at the rate \(\gamma _\mathrm{{m}}\), and decreases by natural death, so that

$$\begin{aligned} \frac{\mathrm{{d}}R_\mathrm{{m}}^\mathrm{{c}}}{\mathrm{{d}}t} = \gamma _\mathrm{{m}}C_\mathrm{{m}}^\mathrm{{c}}-\mu _\mathrm{{m}}R_\mathrm{{m}}^\mathrm{{c}}. \end{aligned}$$
(41)

The population of males who recovered from HPV infection (and genital warts) without developing cancer (\(R_\mathrm{{m}}\)) is generated at the rates \( r_\mathrm{{m}}^{\ell }\psi _\mathrm{{m}}^{\ell }, r_\mathrm{{m}}\psi _\mathrm{{m}}^\mathrm{{h}}, k_\mathrm{{m}}^{\ell }\alpha _\mathrm{{m}}^{\ell }, k_\mathrm{{m}}^\mathrm{{h}}\alpha _\mathrm{{m}}^\mathrm{{h}}, n_\mathrm{{m}},\) \(d_\mathrm{{m}}u_\mathrm{{m}}\) and \( s_{1\mathrm{{m}}}z_\mathrm{{m}}\). It is decreased by re-infection (at the rates \(\rho _\mathrm{{m}}^{\ell }\lambda _\mathrm{{f}}^{\ell }\) and \(\rho _\mathrm{{m}}^\mathrm{{h}}\lambda _\mathrm{{f}}^\mathrm{{h}}\)), loss of infection-acquired immunity (at the rate \(\xi _\mathrm{{m}}\)) and natural death, so that

$$\begin{aligned} \frac{\mathrm{{d}}R_\mathrm{{m}}}{\mathrm{{d}}t}&= r_\mathrm{{m}}^{\ell }\psi _\mathrm{{m}}^{\ell }I_\mathrm{{m}}^{\ell }+r_\mathrm{{f}}\psi _\mathrm{{m}}^\mathrm{{h}}I_\mathrm{{m}}^\mathrm{{h}}+k_\mathrm{{m}}^{\ell } \alpha _\mathrm{{m}}^{\ell }P_\mathrm{{m}}^{\ell }+k_\mathrm{{m}}^\mathrm{{h}}\alpha _\mathrm{{m}}^\mathrm{{h}}P_\mathrm{{m}}^\mathrm{{h}}+n_\mathrm{{m}}W_\mathrm{{m}}+d_mu_mG_\mathrm{{m}\ell }\nonumber \\&\quad +\, s_{1\mathrm{{m}}}z_\mathrm{{m}}G_\mathrm{{mh}}-\left( \rho _\mathrm{{m}}^\mathrm{{h}}\lambda _\mathrm{{f}}^\mathrm{{h}}+\rho _\mathrm{{m}}^{\ell } \lambda _\mathrm{{f}}^{\ell }\right) R_\mathrm{{m}}-\left( \xi _\mathrm{{m}}+\mu _\mathrm{{m}}\right) R_\mathrm{{m}}. \end{aligned}$$
(42)

For the sex-structured model, such as {(14)–(42)}, to be mechanistically and epidemiologically consistent, it is crucial that the associated conservation law of sexual contacts is applied. In other words, the total number of sexual contacts females make with males must equal the total number of sexual contacts males make with females (see also, for instant, Castillo-Chavez et al. 1997; Elbasha 2008; Mukandavire and Garira 2007; Sharomi and Gumel 2009; Xiaodong et al. 1993 and some of the references therein). Thus, the following conservation law must hold:

$$\begin{aligned} c_\mathrm{{m}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) N_\mathrm{{m}}=c_\mathrm{{f}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) N_\mathrm{{f}}. \end{aligned}$$
(43)

It is assumed that male sexual partners are abundant, so that females can always have enough number of male sexual contacts per unit time. Hence, it is assumed that \(c_\mathrm{{f}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) =c_\mathrm{{f}}\), a constant, and \(c_\mathrm{{m}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) \) is calculated from the relation (obtained from (43))

$$\begin{aligned} c_\mathrm{{m}}\left( N_\mathrm{{m}},N_\mathrm{{f}}\right) =\frac{c_\mathrm{{f}}N_\mathrm{{f}}}{N_\mathrm{{m}}}. \end{aligned}$$
(44)

For mathematical convenience, it is assumed, from now on, that the efficacies of the two anti-HPV vaccines (Cervarix and Gardasil) are the same (so that \(\varepsilon _{b}=\varepsilon _{q}=\varepsilon _{v}\)) (Canadian Cancer Society 2010; Food and Drug Administration 2010; Public Health Agency of Canada 2007; World Health Organization 2009). The model is obtained by (44) in {(14), (15), (28) and (29)}.

2 Proof of Theorem 2.1

Proof

Let \(t_1\) = sup\(\{t>0: S_\mathrm{{f}}(t)>0,V_\mathrm{{f}}^\mathrm{{b}}(t)>0, V_\mathrm{{f}}^\mathrm{{q}}(t)>0, E_\mathrm{{f}}^{\ell }(t)>0, E_\mathrm{{f}}^\mathrm{{h}}(t)>0, I_\mathrm{{f}}^{\ell }(t)>0, I_\mathrm{{f}}^\mathrm{{h}}(t)>0, P_\mathrm{{f}}^{\ell }(t)>0, P_\mathrm{{f}}^\mathrm{{h}}(t)>0, W_\mathrm{{f}}(t)>0, G_\mathrm{{f}\ell }(t)>0, G_\mathrm{{fh}}(t)>0, C_\mathrm{{f}}^\mathrm{{c}}(t)>0, R_\mathrm{{f}}^\mathrm{{c}}(t)>0, R_\mathrm{{f}}(t)>0, S_\mathrm{{m}}(t)>0, V_\mathrm{{m}}^\mathrm{{q}}(t)>0, E_\mathrm{{m}}^{\ell }(t)>0, E_\mathrm{{m}}^\mathrm{{h}}(t)>0, I_\mathrm{{m}}^{\ell }(t)>0, I_\mathrm{{m}}^\mathrm{{h}}(t)>0, P_\mathrm{{m}}^{\ell }(t)>0, P_\mathrm{{m}}^\mathrm{{h}}(t)>0, W_\mathrm{{m}}(t)>0, G_\mathrm{{m}\ell }(t)>0, G_\mathrm{{mh}}(t)>0, C_\mathrm{{m}}^\mathrm{{r}}(t)>0, R_\mathrm{{m}}^\mathrm{{c}}(t)>0, R_\mathrm{{m}}(t)>0\}\). Thus, \(t_1>0\). It follows from the first equation of the model (3) that

$$\begin{aligned} \frac{\mathrm{{d}}S_\mathrm{{f}}}{\mathrm{{d}}t}&= \pi _\mathrm{{f}}(1-\varphi _\mathrm{{f}}^\mathrm{{b}}-\varphi _\mathrm{{f}}^\mathrm{{q}})+\xi _\mathrm{{f}}R_\mathrm{{f}}(t)- \left[ \lambda _\mathrm{{m}}^{\ell }(t)+\lambda _\mathrm{{m}}^\mathrm{{h}}(t)\right] S_\mathrm{{f}}(t)-\mu _\mathrm{{f}}S_\mathrm{{f}}(t)\nonumber \\&\ge \pi _\mathrm{{f}}(1-\varphi _\mathrm{{f}}^\mathrm{{b}}-\varphi _\mathrm{{f}}^\mathrm{{q}})-\left[ \lambda _\mathrm{{m}}^{\ell }(t) +\lambda _\mathrm{{m}}^\mathrm{{h}}(t)+\mu _\mathrm{{f}}\right] S_\mathrm{{f}}(t). \end{aligned}$$
(45)

For simplicity, let (note that \(0<\varphi _\mathrm{{f}}^\mathrm{{b}}+\varphi _\mathrm{{f}}^\mathrm{{q}}\le 1\))

$$\begin{aligned} \varphi _\mathrm{{f}}=\varphi _\mathrm{{f}}^\mathrm{{b}}+\varphi _\mathrm{{f}}^\mathrm{{q}},\quad \mathrm{and} \quad \lambda _\mathrm{{m}}(t)=\lambda _\mathrm{{m}}^{\ell }(t)+\lambda _\mathrm{{m}}^\mathrm{{h}}(t), \end{aligned}$$

it follows from

(45), which can be re-written as

$$\begin{aligned} \frac{\mathrm{{d}}}{\mathrm{{d}}t}\left\{ S_\mathrm{{f}}(t)\; \mathrm{exp}\left[ \mu _\mathrm{{f}}t+\int \limits _0^t \! \lambda _\mathrm{{m}}(\tau ) \, \mathrm {\mathrm{{d}}}\tau \right] \right\} \ge \pi _\mathrm{{f}}(1-\varphi _\mathrm{{f}})\;\mathrm{exp}\left[ \mu _\mathrm{{f}}t+\int \limits _0^t \! \lambda _\mathrm{{m}}(\tau ) \, \mathrm {\mathrm{{d}}}\tau \right] . \end{aligned}$$

Hence,

$$\begin{aligned} S_\mathrm{{f}}(t_1)\; \mathrm{exp}\left[ \mu _\mathrm{{f}}t_{1}+\int \limits _0^{t_1}\! \lambda _\mathrm{{m}}(\tau ) \, \mathrm {\mathrm{{d}}}\tau \right] -S_\mathrm{{f}}(0) \ge \int \limits _0^{t_1}\! \pi _\mathrm{{f}}(1-\varphi _\mathrm{{f}})\;\mathrm{exp}\left[ \mu _\mathrm{{f}}y+\int \limits _0^y \! \lambda _\mathrm{{m}}(\tau ) \, \mathrm {\mathrm{{d}}}\tau \right] \mathrm {\mathrm{{d}}}y, \end{aligned}$$

so that

$$\begin{aligned}&S_\mathrm{{f}}(t_1) \ge S_\mathrm{{f}}(0)\;\mathrm{exp}\left[ -\mu _\mathrm{{f}}t_{1}-\int \limits _0^{t_1}\! \lambda _\mathrm{{m}}(\tau ) \, \mathrm {\mathrm{{d}}}\tau \right] \\&\quad + \left\{ \mathrm{exp}\left[ -\mu _\mathrm{{f}}t_{1}-\int \limits _0^{t_1} \! \lambda _\mathrm{{m}}(\tau ) \, \mathrm {d}\tau \right] \right\} \int \limits _0^{t_1}\! \pi _\mathrm{{f}}(1-\varphi _\mathrm{{f}})\;\mathrm{exp}\left[ \mu _\mathrm{{f}}y+\int \limits _0^y \! \lambda _\mathrm{{m}}(\tau ) \, \mathrm {d}\tau \right] \mathrm {d}y>0. \end{aligned}$$

Similarly, it can be shown that \(V_\mathrm{{f}}^\mathrm{{b}}(t)>0, V_\mathrm{{f}}^\mathrm{{q}}(t)>0, E_\mathrm{{f}}^{\ell }(t)\ge 0, E_\mathrm{{f}}^\mathrm{{h}}(t)\ge 0, I_\mathrm{{f}}^{\ell }(t)\ge 0, I_\mathrm{{f}}^\mathrm{{h}}(t)\ge 0, P_\mathrm{{f}}^{\ell }(t)\ge 0, P_\mathrm{{f}}^\mathrm{{h}}(t)\ge 0, W_\mathrm{{f}}(t)\ge 0, G_\mathrm{{f}\ell }(t)\ge 0, G_\mathrm{{fh}}(t)\ge 0, C_\mathrm{{f}}^\mathrm{{c}}(t)\ge 0, R_\mathrm{{f}}^\mathrm{{c}}(t)\ge 0, R_\mathrm{{f}}(t)\ge 0, S_\mathrm{{m}}(t)>0, V_\mathrm{{m}}^\mathrm{{q}}(t)>0, E_\mathrm{{m}}^{\ell }(t)\ge 0, E_\mathrm{{m}}^\mathrm{{h}}(t)\ge 0, I_\mathrm{{m}}^{\ell }(t)\ge 0, I_\mathrm{{m}}^\mathrm{{h}}(t)\ge 0, P_\mathrm{{m}}^{\ell }(t)\ge 0, P_\mathrm{{m}}^\mathrm{{h}}(t)\ge 0, W_\mathrm{{m}}(t)\ge 0, G_\mathrm{{m}\ell }(t)\ge 0, G_\mathrm{{mh}}(t)\ge 0, C_\mathrm{{m}}^\mathrm{{r}}(t)\ge 0, R_\mathrm{{m}}^\mathrm{{c}}(t)\ge 0\) and \(R_\mathrm{{m}}(t)\ge 0\) for all time \(t>0\). Hence, all solutions remain positive for all non-negative initial conditions.\(\square \)

Theorem 2.1 can also be proved using the approach given in Appendix 1 of Thieme (2003).

3 Positivity of \(\mathcal {R}_\mathrm{{f}\ell }, \mathcal {R}_\mathrm{{m}\ell }, \mathcal {R}_\mathrm{{fh}}\) and \(\mathcal {R}_\mathrm{{mh}}\)

Recall from Sect. 3.1 (with all the associated variables as defined in Sect. 3.1) that

$$\begin{aligned} \mathcal {R}_\mathrm{{f}\ell }&= \frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\pi _\mathrm{{f}}\mu _\mathrm{{m}} \left( 1-\varepsilon _{v} \varphi _\mathrm{{f}}^\mathrm{{q}}\right) B_{1}}{\mu _\mathrm{{f}}\pi _\mathrm{{m}}D_{1}D_{2}D_{3}},\;\; \mathcal {R}_\mathrm{{fh}}=\frac{\beta _\mathrm{{m}}^\mathrm{{h}}c_\mathrm{{f}} \pi _\mathrm{{f}}\mu _\mathrm{{m}}\left[ 1-\varepsilon _{v} \left( \varphi _\mathrm{{f}}^\mathrm{{b}}+\varphi _\mathrm{{f}}^\mathrm{{q}}\right) \right] \left( Q_{1}+Q_{2}+Q_{3}\right) }{\mu _\mathrm{{f}}\pi _\mathrm{{m}}D_{5}D_{6}Q_{4}},\\ \mathcal {R}_\mathrm{{m}\ell }&= \frac{\beta _\mathrm{{f}}^{\ell }c_\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) B_{2}}{A_{1}A_{2}A_{3}},\;\; \mathcal {R}_\mathrm{{mh}}=\frac{\beta _\mathrm{{f}}^\mathrm{{h}}c_\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{b}}-\varepsilon _{q}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) \left( Q_{5}+Q_{6}+Q_{7}\right) }{A_{5}A_{6}Q_{8}}. \end{aligned}$$

The following steps are taken to prove that the quantities above are positive:

$$\begin{aligned} B_{1}&= \eta _\mathrm{{m}}^{\ell }D_{3}D_{2}+k_{1}D_{3}+\theta _\mathrm{{m}}^{\ell }k_{2}k_{1}>0,\\ Q_{1}&= \eta _\mathrm{{m}}^\mathrm{{h}}\left( D_{6}D_{7}D_{8}D_{9}-k_{8}j_{2}D_{6}D_{7}-k_{8}k_{7}j_{1}D_{6}\right) \\&= \eta _\mathrm{{m}}^\mathrm{{h}}D_{6}\left( \omega _\mathrm{{m}}+\mu _\mathrm{{m}}\right) \left( u_\mathrm{{m}}+\mu _\mathrm{{m}}\right) \left( \alpha _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}}\right) \\&\quad +\, \eta _\mathrm{{m}}^\mathrm{{h}}D_{6}z_\mathrm{{m}}\mu _\mathrm{{m}}\left( \alpha _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}}\right) +\eta _\mathrm{{m}}^\mathrm{{h}}D_{6}d_\mathrm{{m}}u_\mathrm{{m}}z_\mathrm{{m}}\left( \alpha _\mathrm{{m}}^\mathrm{{h}}+s_{2\mathrm{{m}}}\mu _\mathrm{{m}}\right) \\&\quad +\,\eta _\mathrm{{m}}^\mathrm{{h}}D_{6}u_\mathrm{{m}}z_\mathrm{{m}}\mu _\mathrm{{m}}\left( 1-s_{2\mathrm{{m}}}\right) \\&\quad +\,\eta _\mathrm{{m}}^\mathrm{{h}}D_{6}u_\mathrm{{m}}z_\mathrm{{m}}\left( 1-d_\mathrm{{m}}\right) \alpha _\mathrm{{m}}^\mathrm{{h}}\left[ s_{1\mathrm{{m}}}\left( 1-k_\mathrm{{m}}^\mathrm{{h}}\right) +k_\mathrm{{m}}^\mathrm{{h}}\left( 1-s_{2\mathrm{{m}}}\right) \right] >0,\\ Q_{2}&= k_{5}D_{7}D_{8}D_{9}-k_{5}k_{8}j_{2}D_{7}-k_{5}k_{7}k_{8}j_{1}\\&= k_{5}\left( \omega _\mathrm{{m}}+\mu _\mathrm{{m}}\right) \left( u_\mathrm{{m}}+\mu _\mathrm{{m}}\right) \left( \alpha _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}}\right) \\&\quad +\, k_{5}z_\mathrm{{m}}\mu _\mathrm{{m}}\left( \alpha _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}}\right) +k_{5}d_\mathrm{{m}}u_\mathrm{{m}}z_\mathrm{{m}}\left( \alpha _\mathrm{{m}}^\mathrm{{h}}+s_{2\mathrm{{m}}}\mu _\mathrm{{m}}\right) +k_{5}u_\mathrm{{m}}z_\mathrm{{m}}\mu _\mathrm{{m}}\left( 1-s_{2\mathrm{{m}}}\right) \\&\quad +\, k_{5}u_\mathrm{{m}}z_\mathrm{{m}}\left( 1-d_\mathrm{{m}}\right) \alpha _\mathrm{{m}}^\mathrm{{h}}\left[ s_{1\mathrm{{m}}}\left( 1-k_\mathrm{{m}}^\mathrm{{h}}\right) +k_\mathrm{{m}}^\mathrm{{h}}\left( 1-s_{2\mathrm{{m}}}\right) \right] >0, \end{aligned}$$
$$\begin{aligned} Q_{3}&= \theta _\mathrm{{m}}^\mathrm{{h}}\left( k_{5}k_{6}D_{8}D_{9}-k_{5}k_{6}k_{8}j_{2}\right) \\&= \theta _\mathrm{{m}}^\mathrm{{h}}k_{5}k_{6}\left( \omega _\mathrm{{m}}+\mu _\mathrm{{m}}\right) \left( u_\mathrm{{m}}+\mu _\mathrm{{m}}\right) +\theta _\mathrm{{m}}^\mathrm{{h}}k_{5}k_{6}z_\mathrm{{m}}u_\mathrm{{m}}\left( 1-s_{2\mathrm{{m}}}\right) \\&\quad +\,\theta _\mathrm{{m}}^\mathrm{{h}}k_{5}k_{6}z_\mathrm{{m}}\left( d_\mathrm{{m}}u_\mathrm{{m}}s_{2\mathrm{{m}}}+\mu _\mathrm{{m}}\right) >0,\\ Q_{4}&= D_{7}D_{8}D_{9}-k_{8}j_{2}D_{7}-k_{7}k_{8}j_{1}\\&= \left( \omega _\mathrm{{m}}+\mu _\mathrm{{m}}\right) \left( u_\mathrm{{m}}+\mu _\mathrm{{m}}\right) \left( \alpha _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}}\right) +z_\mathrm{{m}}\mu _\mathrm{{m}}\left( \alpha _\mathrm{{m}}^\mathrm{{h}}+\mu _\mathrm{{m}}\right) \\&\quad +\, d_\mathrm{{m}}u_\mathrm{{m}}z_\mathrm{{m}}\left( \alpha _\mathrm{{m}}^\mathrm{{h}}+s_{2\mathrm{{m}}}\mu _\mathrm{{m}}\right) +u_\mathrm{{m}}z_\mathrm{{m}}\mu _\mathrm{{m}}\left( 1-s_{2\mathrm{{m}}}\right) \\&\quad +\, u_\mathrm{{m}}z_\mathrm{{m}}\left( 1-d_\mathrm{{m}}\right) \alpha _\mathrm{{m}}^\mathrm{{h}}\left[ s_{1\mathrm{{m}}}\left( 1-k_\mathrm{{m}}^\mathrm{{h}}\right) +k_\mathrm{{m}}^\mathrm{{h}}\left( 1-s_{2\mathrm{{m}}}\right) \right] >0,\\ B_{2}&= \eta _\mathrm{{f}}^{\ell }A_{3}A_{2}+b_{1}A_{3}+\theta _\mathrm{{f}}^{\ell }b_{2}b_{1}>0,\\ Q_{5}&= \eta _\mathrm{{f}}^\mathrm{{h}}\left( A_{6}A_{7}A_{8}A_{9}-b_{8}g_{2}A_{6}A_{7}-b_{8}b_{7}g_{1}A_{6}\right) \\&= \eta _\mathrm{{f}}^\mathrm{{h}}A_{6}\left( \omega _\mathrm{{f}}+\mu _\mathrm{{f}}\right) \left( u_\mathrm{{f}}+\mu _\mathrm{{f}}\right) \left( \alpha _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}}\right) \\&\quad +\, \eta _\mathrm{{f}}^\mathrm{{h}}A_{6}z_\mathrm{{f}}\mu _\mathrm{{f}}\left( \alpha _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}}\right) +\eta _\mathrm{{f}}^\mathrm{{h}}A_{6}d_\mathrm{{f}}u_\mathrm{{f}}z_\mathrm{{f}}\left( \alpha _\mathrm{{f}}^\mathrm{{h}}+s_{2\mathrm{{f}}}\mu _\mathrm{{f}}\right) +\eta _\mathrm{{f}}^\mathrm{{h}}A_{6}u_\mathrm{{f}}z_\mathrm{{f}}\mu _\mathrm{{f}}\left( 1-s_{2\mathrm{{f}}}\right) \\&\quad +\, \eta _\mathrm{{f}}^\mathrm{{h}}A_{6}u_\mathrm{{f}}z_\mathrm{{f}}\left( 1-d_\mathrm{{f}}\right) \alpha _\mathrm{{f}}^\mathrm{{h}}\left[ s_{1\mathrm{{m}}}\left( 1-k_\mathrm{{f}}^\mathrm{{h}}\right) +k_\mathrm{{f}}^\mathrm{{h}}\left( 1-s_{2\mathrm{{f}}}\right) \right] >0, \end{aligned}$$
$$\begin{aligned} Q_{6}&= b_{5}A_{7}A_{8}A_{9}-b_{5}b_{8}g_{2}A_{7}-b_{5}b_{7}b_{8}g_{1}\\&= b_{5}\left( \omega _\mathrm{{f}}+\mu _\mathrm{{f}}\right) \left( u_\mathrm{{f}}+\mu _\mathrm{{f}}\right) \left( \alpha _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}}\right) \\&+ b_{5}z_\mathrm{{f}}\mu _\mathrm{{f}}\left( \alpha _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}}\right) +b_{5}d_\mathrm{{f}}u_\mathrm{{f}}z_\mathrm{{f}}\left( \alpha _\mathrm{{f}}^\mathrm{{h}}+s_{2\mathrm{{f}}}\mu _\mathrm{{f}}\right) +b_{5}u_\mathrm{{f}}z_\mathrm{{f}}\mu _\mathrm{{f}}\left( 1-s_{2\mathrm{{f}}}\right) \\&+ b_{5}u_\mathrm{{f}}z_\mathrm{{f}}\left( 1-d_\mathrm{{f}}\right) \alpha _\mathrm{{f}}^\mathrm{{h}}\left[ s_{1\mathrm{{m}}}\left( 1-k_\mathrm{{f}}^\mathrm{{h}}\right) +k_\mathrm{{f}}^\mathrm{{h}}\left( 1-s_{2\mathrm{{f}}}\right) \right] >0,\\ Q_{7}&= \theta _\mathrm{{f}}^\mathrm{{h}}\left( b_{5}b_{6}A_{8}A_{9}-b_{5}b_{6}b_{8}g_{2}\right) \\&= \theta _\mathrm{{f}}^\mathrm{{h}}b_{5}b_{6}\left( \omega _\mathrm{{f}}+\mu _\mathrm{{f}}\right) \left( u_\mathrm{{f}}+\mu _\mathrm{{f}}\right) +\theta _\mathrm{{f}}^\mathrm{{h}}b_{5}b_{6}z_\mathrm{{f}}u_\mathrm{{f}}\left( 1-s_{2\mathrm{{f}}}\right) \\&\quad +\,\theta _\mathrm{{f}}^\mathrm{{h}}b_{5}b_{6}z_\mathrm{{f}}\left( d_\mathrm{{f}}u_\mathrm{{f}}s_{2\mathrm{{f}}}+\mu _\mathrm{{f}}\right) >0,\\ Q_{8}&= A_{7}A_{8}A_{9}-b_{8}g_{2}A_{7}-b_{7}b_{8}g_{1}\\&= \left( \omega _\mathrm{{f}}+\mu _\mathrm{{f}}\right) \left( u_\mathrm{{f}}+\mu _\mathrm{{f}}\right) \left( \alpha _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}}\right) +z_\mathrm{{f}}\mu _\mathrm{{f}}\left( \alpha _\mathrm{{f}}^\mathrm{{h}}+\mu _\mathrm{{f}}\right) \\&\quad +\,d_\mathrm{{f}}u_\mathrm{{f}}z_\mathrm{{f}}\left( \alpha _\mathrm{{f}}^\mathrm{{h}}+s_{2\mathrm{{f}}}\mu _\mathrm{{f}}\right) +u_\mathrm{{f}}z_\mathrm{{f}}\mu _\mathrm{{f}}\left( 1-s_{2\mathrm{{f}}}\right) \\&\quad +\,u_\mathrm{{f}}z_\mathrm{{f}}\left( 1-d_\mathrm{{f}}\right) \alpha _\mathrm{{f}}^\mathrm{{h}}\left[ s_{1\mathrm{{m}}}\left( 1-k_\mathrm{{f}}^\mathrm{{h}}\right) +k_\mathrm{{f}}^\mathrm{{h}}\left( 1-s_{2\mathrm{{f}}}\right) \right] >0. \end{aligned}$$

Thus,

$$\begin{aligned} \mathcal {R}_\mathrm{{f}\ell }>0,\;\; \mathcal {R}_\mathrm{{m}\ell }>0, \;\; \mathcal {R}_\mathrm{{fh}}>0 \;\; \mathrm{and} \;\; \mathcal {R}_\mathrm{{mh}}>0. \end{aligned}$$

4 Coefficients of the Polynomial (3.8)

$$\begin{aligned} Y_{0}&= b_{02}^{3}a_{33}+a_{02}a_{22}b_{02}b_{33}+b_{33}^{3}a_{00}+b_{33}^{2}b_{02}a_{11}>0,\\ Y_{1}&= 2b_{22}b_{33}\left( a_{00}b_{33}+a_{11}b_{02}\right) +b_{33}^{2}\left( b_{22}a_{00}-b_{02}a_{0}+b_{01}a_{11}\right) \\&\quad +\, a_{02}a_{22}\left( b_{02}b_{22}+b_{01}b_{33}\right) +2b_{02}^{2}b_{01}a_{33}\\&\quad +\,b_{02}b_{33}\left( b_{01}a_{22}-b_{02}a_{01}\right) +b_{02}^{2}\left( b_{01}a_{33}-b_{02}a_{02}\right) ,\\ Y_{2}&= b_{02}^{2}\left( b_{0}a_{33}-b_{01}a_{02}\right) +2b_{02}b_{01}\left( b_{01}b_{33}-b_{02}a_{02}\right) +b_{02}b_{33}\left( 2b_{0}b_{02}+b_{01}^{2}\right) \\&\quad +\, b_{02}b_{33}\left( b_{0}a_{22}-b_{01}a_{01}\right) +a_{02}a_{22}\left( b_{02}b_{11}+b_{01}b_{22}+b_{0}b_{33}\right) \\&\quad +\,\left( b_{02}b_{22}+b_{01}b_{33}\right) \left( b_{01}a_{22}-b_{02}a_{01}\right) +\left( 2b_{11}b_{33}+b_{22}^2\right) \left( a_{00}b_{33}+a_{11}b_{02}\right) \\&\quad +\, 2b_{33}b_{22}\left( b_{22}a_{00}-b_{02}a_{0}+b_{01}a_{11}\right) +b_{33}^{2}\left( b_{11}a_{00}+b_{0}a_{11}-b_{01}a_{0}\right) ,\\ Y_{3}&= -b_{02}^{2}b_{0}a_{02}+2b_{02}b_{01}\left( b_{0}a_{33}-b_{01}a_{02}\right) +\left( b_{02}b_{0}+b_{01}^{2}+b_{0}b_{02}\right) \\&\quad \times \left( b_{01}a_{33}-b_{02}a_{02}\right) -a_{01}b_{0}b_{02}b_{33}+2b_{0}b_{01}b_{02}a_{33}\\&\quad +\,a_{02}a_{22}\left( b_{02}b_{00}+b_{01}b_{11}+b_{0}b_{22}\right) + 2b_{22}b_{33}\left( a_{11}b_{0}+a_{00}b_{11}-b_{01}a_{0}\right) \\&\quad +\,\left( b_{01}a_{22}-b_{02}a_{01}\right) \left( b_{02}b_{11}+b_{01}b_{22}+b_{0}b_{33}\right) \\&\quad +\,\left( a_{00}b_{33}+a_{11}b_{02}\right) \left( 2b_{33}b_{00}+2b_{22}b_{11}\right) +\left( b_{0}a_{22}-b_{01}a_{01}\right) \\&\quad \times \left( b_{02}b_{22}+b_{01}b_{33}\right) +\left( b_{22}a_{00}-b_{02}a_{0}+b_{01}a_{11}\right) \left( 2b_{33}b_{11}+b_{22}^{2}\right) \\&\quad +\,b_{33}^{2}\left( a_{00}b_{00}-a_{0}b_{0}\right) , \end{aligned}$$
$$\begin{aligned} Y_{4}&= -2b_{0}a_{02}b_{02}b_{01}+\left( 2b_{0}b_{02}+b_{01}^{2}\right) \left( b_{0}a_{33}-b_{01}a_{02}\right) \\&\quad +\,2b_{0}b_{01}\left( b_{01}a_{33}-a_{02}b_{02}\right) +a_{02}a_{22}b_{01}b_{00} +a_{02}a_{22}b_{0}b_{11}\\&\quad +\,\left( b_{01}a_{22}-b_{02}a_{01}\right) \left( b_{02}b_{00}+b_{01}b_{11}+b_{0}b_{22}\right) -a_{01}b_{0}\left( b_{02}b_{22}+b_{01}b_{33}\right) \\&\quad +\,\left( b_{0}a_{22}-b_{01}a_{01}\right) \left( b_{02}b_{11}+b_{01}b_{22}+b_{0}b_{33}\right) +\left( a_{00}b_{33}+a_{11}b_{02}\right) \\&\quad \times \left( 2b_{22}b_{00}+b_{11}^{2}\right) +\left( b_{22}a_{00}-a_{0}b_{02}\right) \left( 2b_{22}b_{11}+2b_{33}b_{00}\right) \\&\quad +\,\left( a_{11}b_{0}+a_{00}b_{11}-b_{01}a_{0}\right) \left( 2b_{11}b_{33}+b_{22}^{2}\right) +2b_{22}b_{33}\left( a_{00}b_{00}-a_{0}b_{0}\right) ,\\ Y_{5}&= -2b_{0}a_{02}\left( 2b_{0}b_{02}+b_{01}^{2}\right) +b_{01}^{2}\left( b_{01}a_{33}-a_{02}b_{02}\right) +2b_{0}b_{01}\left( b_{0}a_{33}-b_{01}a_{02}\right) \\&\quad +\,2b_{00}b_{11}a_{00}b_{33}+ 2b_{00}b_{11}a_{11}b_{02}+\left( b_{01}a_{22}-b_{02}a_{01}\right) \left( b_{01}b_{00}+b_{0}b_{11}\right) \\&\quad -\,a_{01}b_{0}\left( b_{02}b_{11}+b_{01}b_{22}+b_{0}b_{33}\right) +\left( b_{22}a_{00}-a_{0}b_{02}+b_{01}a_{11}\right) \\&\quad \times \left( 2b_{00}b_{22}+b_{11}^{2}\right) +\left( b_{0}a_{22}-b_{01}a_{01}\right) \left( b_{02}b_{00}+b_{01}b_{11}+b_{0}b_{22}\right) \\&\quad +\,\left( a_{11}b_{0}+a_{00}b_{11}-b_{01}a_{0}\right) \left( 2b_{00}b_{33}+2b_{22}b_{11}\right) \\&\quad +\,\left( a_{00}b_{00}-a_{0}b_{0}\right) \left( 2b_{11}b_{33}+b_{22}^{2}\right) , \end{aligned}$$
$$\begin{aligned} Y_{6}&= -2b_{0}^{2}b_{01}a_{02}+b_{01}^{2}\left( b_{0}a_{33}-b_{01}a_{02}\right) +b_{0}b_{00}\left( b_{01}a_{22}-b_{02}a_{01}\right) \\&\quad +\,\left( b_{0}a_{22}-b_{01}a_{01}\right) \left( b_{01}b_{00}+b_{0}b_{11}\right) +2b_{00}b_{11}\left( b_{22}a_{00}-a_{0}b_{02}+b_{01}a_{11}\right) \\&\quad +\,b_{00}^{2}\left( a_{00}b_{33}+a_{11}b_{02}\right) -b_{0}^{2}a_{01}b_{00}-b_{01}a_{0}\left( 2b_{22}b_{00}+b_{11}^{2}\right) \\&\quad +\,\left( a_{11}b_{0}+b_{11}a_{00}\right) \left( 2b_{22}b_{00}+b_{11}^{2}\right) +\left( a_{00}b_{00}-a_{0}b_{0}\right) \left( 2b_{33}b_{00}+2b_{22}b_{11}\right) ,\\ Y_{7}&= -b_{0}a_{02}b_{01}^{2}+b_{0}b_{00}\left( b_{0}a_{22}-b_{01}a_{01}\right) -a_{01}b_{0}\left( b_{01}b_{00}+b_{0}b_{11}\right) \\&\quad +\,2b_{00}b_{11}\left( a_{00}b_{11}-b_{01}a_{0}+a_{11}b_{0}\right) +b_{00}^{2}\left( b_{22}a_{00}-a_{0}b_{02}+b_{01}a_{11}\right) \\&\quad +\left( a_{00}b_{00}-a_{0}b_{0}\right) \left( 2b_{22}b_{00}+b_{11}^{2}\right) ,\\ Y_{8}&= -a_{01}b_{0}^{2}b_{00}+b_{00}^{2}\left( a_{11}b_{0}+a_{00}b_{11}-a_{0}b_{01}\right) +2b_{00}b_{11}\left( a_{00}b_{00}-a_{0}b_{0}\right) ,\\ Y_{9}&= b_{00}^{3}a_{00}\left[ 1-\left( \mathcal {R}_{0}^{\ell }\right) ^{2}\right] >0\;\;\left( \mathrm{if}\;\; \mathcal {R}_{0}^{\ell }<1\right) . \end{aligned}$$

5 Proof of Theorem 3.3

Proof

The proof is based on using Centre Manifold theory (Carr 1981; Castillo-Chavez and Song 2004). It is convenient to use the change of variables:

$$\begin{aligned} S_\mathrm{{f}}&= x_{1},\;\; V_\mathrm{{f}}^\mathrm{{q}}=x_{2},\;\;E_\mathrm{{f}}^{\ell }=x_{3},\;\;I_\mathrm{{f}}^{\ell }=x_{4},\;\;P_\mathrm{{f}}^{\ell }=x_{5}, \;\;W_\mathrm{{f}}=x_{6},\;\;R_\mathrm{{f}}=x_{7},\;\;S_\mathrm{{m}}=x_{8},\nonumber \\ V_\mathrm{{m}}^\mathrm{{q}}&= x_{9},\;\;E_\mathrm{{m}}^{\ell }=x_{10},\;\;I_\mathrm{{m}}^{\ell }=x_{11}, \;\;P_\mathrm{{m}}^{\ell }=x_{12},\;\;W_\mathrm{{m}}=x_{13},\;\;R_\mathrm{{m}}=x_{14}. \end{aligned}$$
(46)

Let \(\hat{f} = \left[ f_1,\ldots , f_{14}\right] \) denote the vector field of the low-risk-only model (8) in the notation (46), so that the low-risk-only model (8) is re-written in the following form:

$$\begin{aligned} \frac{\mathrm{{d}}x_{1}}{\mathrm{{d}}t}&= f_{1}=(1-\varphi _\mathrm{{f}}^\mathrm{{q}})\pi _\mathrm{{f}}-\frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}x_{11}x_{1}}{\pi _\mathrm{{m}}}-\mu _\mathrm{{f}}x_{1},\nonumber \\ \frac{\mathrm{{d}}x_{2}}{\mathrm{{d}}t}&= f_{2}=\varphi _\mathrm{{f}}^\mathrm{{q}}\pi _\mathrm{{f}}-(1-\varepsilon _{v})\frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}x_{11}x_{2}}{\pi _\mathrm{{m}}}-\mu _\mathrm{{f}}x_{2},\nonumber \\ \frac{\mathrm{{d}}x_{3}}{\mathrm{{d}}t}&= f_{3}=\left[ x_{1}+(1-\varepsilon _{v})x_{2}+\rho _\mathrm{{f}}^{\ell }x_{7}\right] \frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}x_{11}}{\pi _\mathrm{{m}}}-A_{1}x_{3},\nonumber \\ \frac{\mathrm{{d}}x_{4}}{\mathrm{{d}}t}&= f_{4}=\sigma _\mathrm{{f}}^{\ell }x_{3}-A_{2}x_{4}, \nonumber \\ \frac{\mathrm{{d}}x_{5}}{\mathrm{{d}}t}&= f_{5}=b_{2}x_{4}-A_{3}x_{5},\\ \frac{\mathrm{{d}}x_6}{\mathrm{{d}}t}&= f_{6}=b_{3}x_{5}-A_{4}x_6,\nonumber \\ \frac{\mathrm{{d}}x_{7}}{\mathrm{{d}}t}&= f_{7}=m_{1}x_{4}+m_{2}x_{5}+n_\mathrm{{f}}x_6-\rho _\mathrm{{f}}^{\ell }\frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}x_{11}x_{7}}{\pi _\mathrm{{m}}}-\mu _\mathrm{{f}}x_{7},\nonumber \\ \frac{\mathrm{{d}}x_{8}}{\mathrm{{d}}t}&= f_{8}=\left( 1-\varphi _\mathrm{{m}}^\mathrm{{q}}\right) \pi _\mathrm{{m}}-\frac{\beta _\mathrm{{f}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}x_{3}x_{8}}{\pi _\mathrm{{m}}}-\mu _\mathrm{{m}}x_{8},\nonumber \\ \frac{\mathrm{{d}}x_{9}}{\mathrm{{d}}t}&= f_{9}=\varphi _\mathrm{{m}}^\mathrm{{q}}\pi _\mathrm{{m}}-(1-\varepsilon _{v})\frac{\beta _\mathrm{{f}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}x_{3}x_{9}}{\pi _\mathrm{{m}}}-\mu _\mathrm{{m}}x_{9},\nonumber \\ \frac{\mathrm{{d}}x_{10}}{\mathrm{{d}}t}&= f_{10}=\left[ x_{8}+(1-\varepsilon _{v})x_{9}+\rho _\mathrm{{m}}^{\ell }x_{14}\right] \frac{\beta _\mathrm{{f}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}x_{3}}{\pi _\mathrm{{m}}}-D_{1}x_{10},\nonumber \\ \frac{\mathrm{{d}}x_{11}}{\mathrm{{d}}t}&= f_{11}=\sigma _\mathrm{{m}}^{\ell }x_{10}-D_{2}x_{11},\nonumber \\ \frac{\mathrm{{d}}x_{12}}{\mathrm{{d}}t}&= f_{12}=k_{2}x_{11}-D_{3}x_{12},\nonumber \\ \frac{\mathrm{{d}}x_{13}}{\mathrm{{d}}t}&= f_{13}=k_{3}x_{13}-D_{4}x_{13},\nonumber \\ \frac{\mathrm{{d}}x_{14}}{\mathrm{{d}}t}&= f_{14}=m_{4}x_{11}+m_{5}x_{12}+n_\mathrm{{m}}x_{13}-\rho _\mathrm{{m}}^{\ell }\frac{\beta _\mathrm{{f}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}x_{3}x_{14}}{\pi _\mathrm{{m}}}-\mu _\mathrm{{m}}x_{14},\nonumber \end{aligned}$$
(47)

where \(A_{i},D_{i}\) (\(i=1,\ldots ,4\)), \(b_{j},k_{j}\) (\(j=1,\ldots ,3\)) and \(m_{1}, m_{2}, m_{4}, m_{5}\) are as defined in Sects. 3.1 and 3.2.

The Jacobian of the system (47) at the DFE (\(\mathcal {E}_{0}^{\ell }\)) is given by

$$\begin{aligned} J^{\ell }(\mathcal {E}_{0}^{\ell })=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} -\mu _\mathrm{{f}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{}0&{}0&{} -U_{1}&{} 0 &{} 0&{}0\\ 0&{}-\mu _\mathrm{{f}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{}0&{}0&{} -U_{2}&{} 0 &{} 0&{}0\\ 0 &{} 0 &{} U_{4}&{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} U_{3}&{} 0 &{} 0&{}0\\ 0 &{} 0 &{} \sigma _\mathrm{{f}}^{\ell } &{} U_{5} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0 &{} 0&{}0\\ 0 &{} 0 &{} 0 &{} b_{2} &{} U_{6} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0&{}0&{}0&{}0\\ 0 &{} 0 &{} 0 &{}0&{} b_{3} &{}U_{7} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0&{}0&{}0\\ 0 &{} 0 &{} 0 &{} m_{1} &{} m_{2} &{} n_\mathrm{{f}} &{} -\mu _\mathrm{{f}} &{} 0 &{} 0 &{} 0 &{} 0&{}0&{}0&{}0\\ 0&{} 0 &{} 0 &{} -U_{8} &{} 0 &{} 0 &{} 0&{} -\mu _\mathrm{{m}} &{}0&{}0&{} 0&{} 0 &{} 0&{}0\\ 0&{} 0 &{} 0 &{} -U_{9} &{} 0 &{} 0 &{} 0&{} 0&{} -\mu _\mathrm{{m}} &{}0&{}0&{} 0&{} 0 &{} 0\\ 0&{} 0 &{} 0 &{} U_{10} &{} 0 &{} 0 &{} 0&{} 0&{}0&{} U_{11} &{}0&{}0&{} 0&{} 0 \\ 0&{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0&{} 0&{}0&{} \sigma _\mathrm{{m}}^{\ell }&{}U_{12}&{}0&{} 0&{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{}0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} k_{2}&{}U_{13}&{}0&{}0\\ 0 &{} 0 &{} 0 &{} 0 &{}0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{}0&{} k_{3}&{}U_{14}&{}0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0&{} m_{4}&{}m_{5}&{}n_\mathrm{{m}}&{}-\mu _\mathrm{{m}}\end{array}\right) , \end{aligned}$$

where

$$\begin{aligned} U_{1}&= \frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\pi _\mathrm{{f}}\mu _\mathrm{{m}}\left( 1-\varphi _\mathrm{{f}}^\mathrm{{q}}\right) }{\mu _\mathrm{{f}}\pi _\mathrm{{m}}},\;\; U_{2}=\frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\pi _\mathrm{{f}}\mu _\mathrm{{m}}\varphi _\mathrm{{f}}^\mathrm{{q}}\left( 1-\varepsilon _{v}\right) }{\mu _\mathrm{{f}}\pi _\mathrm{{m}}},\\ U_{3}&= \frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\pi _\mathrm{{f}}\mu _\mathrm{{m}}\left( 1-\varepsilon _{q}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) }{\pi _\mathrm{{m}}},\;\; U_{4}=-A_{1},\;\; U_{5}=-A_{2},\;\; U_{6}=-A_{3},\\ U_{7}&= -A_{4},\;\; U_{8}=\beta ^{*}c_\mathrm{{f}}\left( 1-\varphi _\mathrm{{m}}^\mathrm{{q}}\right) ,\;\; U_{9}=\beta ^{*}c_\mathrm{{f}}\varphi _\mathrm{{m}}^\mathrm{{q}}\left( 1-\varepsilon _{v}\right) ,\\ U_{10}&= \beta ^{*}c_\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) ,\;\; U_{11}=-D_{1},\;\; U_{12}=-D_{2},\\ U_{13}&= -D_{3},\;\; U_{14}=-D_{4}. \end{aligned}$$

Consider the case when \(\mathcal {R}_{0}^{\ell }=1\), and choose \(\beta _\mathrm{{f}}^{\ell }\) as a bifurcation parameter. Solving for \(\beta _\mathrm{{f}}^{\ell }\) from \(\mathcal {R}_{0}^{\ell }=1\) gives

$$\begin{aligned} \beta _\mathrm{{f}}^{\ell }=\beta ^{*}=\frac{A_{1}A_{2}D_{1}D_{2}\pi _\mathrm{{m}} \mu _\mathrm{{f}}}{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}^{2}\pi _\mathrm{{f}}\mu _\mathrm{{m}}k_{1}b_{1} \left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) \left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) }. \end{aligned}$$
(48)

The transformed system (47), with \(\beta _\mathrm{{f}}^{\ell }=\beta ^{*}\), has a hyperbolic equilibrium point (i.e. the linearization has an eigenvalue with zero real part, while the other eigenvalues have negative real part; hence, the Centre Manifold theory can be used Carr 1981).\(\square \)

1.1 Eigenvectors of \(J^{\ell }(\mathcal {E}_{0}^{\ell })\mid _{\beta _\mathrm{{f}}^{\ell }=\beta ^{*}}\):

It can be shown that the Jacobian of (47) at \(\beta _\mathrm{{f}}^{\ell }=\beta ^{*}\) (denoted by \(J_{\beta ^{*}}^{\ell }\)) has a left eigenvector (associated with the zero eigenvalue) given by

$$\begin{aligned} \varvec{v}=\left[ v_{1},v_{2},v_{3},v_{4},v_{5},v_{6},v_{7},v_{8},v_{9},v_{10},v_{11},v_{12},v_{13},v_{14}\right] ^{T}, \end{aligned}$$

with

$$\begin{aligned} v_{1}&= 0,\;\; v_{2}=0,\;\; v_{3}=\frac{\sigma _\mathrm{{f}}^{\ell }v_{4}}{A_{1}},\;\; v_{4} = \frac{\beta ^{*}c_\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) v_{10}}{A_{2}}, \;\; v_{5}=0,\;\; v_{6}=0,\\ v_{7}&= 0,\;\; v_{8}=0,\;\; v_{9} = 0,\;\; v_{10} =v_{10}>0,\;\; v_{11}=\frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}\pi _\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) v_{3}}{D_{2}\pi _\mathrm{{m}}\mu _\mathrm{{f}}},\\ v_{12}&= 0,\;\; v_{13}=0,\;\; v_{14}=0. \end{aligned}$$

Furthermore, the matrix \(J_{\beta ^{*}}^{\ell }\) has a right eigenvector (associated with the zero eigenvalue) given by

$$\begin{aligned} \varvec{w}=\left[ w_{1},w_{2},w_{3},w_{4},w_{5},w_{6},w_{7},w_{8},w_{9},w_{10},w_{11},w_{12},w_{13},w_{14}\right] ^{T}, \end{aligned}$$

where

$$\begin{aligned} w_{1}&= -\frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}\pi _\mathrm{{f}}\left( 1-\varphi _\mathrm{{f}}^\mathrm{{q}}\right) w_{11}}{\mu _\mathrm{{f}}^{2}\pi _\mathrm{{m}}},\;\;w_{2}=-\frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}\pi _\mathrm{{f}}\left( 1-\varepsilon _{v}\right) \varphi _\mathrm{{f}}^\mathrm{{q}}w_{11}}{\pi _\mathrm{{m}}\mu _\mathrm{{f}}^{2}},\nonumber \\ w_{3}&= \frac{\beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\mu _\mathrm{{m}}\pi _\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) w_{11}}{A_{1}\pi _\mathrm{{m}}\mu _\mathrm{{f}}},\;\; w_{4}=\frac{\sigma _\mathrm{{f}}^{\ell }w_{3}}{A_{2}},\;\; w_{5}=\frac{b_{2}w_{4}}{A_{3}},\;\; w_{6}=\frac{b_{3}w_{5}}{A_{4}}, \nonumber \\ w_{7}&= \frac{m_{1}w_{4}+m_{2}w_{5}+n_\mathrm{{f}}w_{6}}{\mu _\mathrm{{f}}},\;\; w_{8}=-\frac{\beta ^{*}c_\mathrm{{f}}\left( 1-\varphi _\mathrm{{m}}^\mathrm{{q}}\right) w_{4}}{\mu _\mathrm{{m}}},\nonumber \\ w_{9}&= -\frac{\beta ^{*}c_\mathrm{{f}}\left( 1-\varepsilon _{v}\right) \varphi _\mathrm{{m}}^\mathrm{{q}}w_{4}}{\mu _\mathrm{{m}}},\;\; w_{10}=w_{10}>0,\;\; w_{11}=\frac{\sigma _\mathrm{{m}}^{\ell }w_{10}}{D_{2}},\;\; w_{12}=\frac{k_{2}w_{11}}{D_{3}},\nonumber \\ w_{13}&= \frac{k_{3}w_{12}}{D_{4}},\;\; w_{14}=\frac{m_{4}w_{11}+m_{5}w_{12}+n_\mathrm{{m}}w_{13}}{\mu _\mathrm{{m}}}.\nonumber \end{aligned}$$

Thus, using Theorem 4.1 of Castillo-Chavez and Song (2004), the associated bifurcation coefficients, \(a\) and \(b\), can be computed as below.

1.2 Computations of Bifurcation Coefficients, \(a\) and \(b\):

It can be shown, by computing the non-zero partial derivatives of the model (47) at the DFE (\(\mathcal {E}_{0}^{\ell }\)) and simplifying, that (Castillo-Chavez and Song 2004)

$$\begin{aligned} a = \sum _{k,i,j=1}^{14}v_{k}w_{i}w_{j}\frac{\partial ^{2}f_{k}}{\partial x_{i}\partial x_{j}}(0,0)=\frac{2c_\mathrm{{f}}}{\mu _\mathrm{{f}}^{2}\pi _\mathrm{{m}}^{2}}\left( M_{11}-M_{22}\right) , \end{aligned}$$
(49)

and

$$\begin{aligned} b = \sum _{k,i=1}^{14}v_{k}w_{i}\frac{\partial ^{2}f_{k}}{\partial x_{i}\partial \beta ^{*}}(0,0)= c_\mathrm{{f}}v_{10}w_{4}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) >0, \end{aligned}$$

where

$$\begin{aligned} M_{11}&= v_{3}w_{7}w_{11}\rho _\mathrm{{f}}^{\ell }\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\pi _\mathrm{{m}}+v_{10}w_{4}w_{14}\rho _\mathrm{{m}}^{\ell }\beta ^{*}\mu _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\pi _\mathrm{{m}}+v_{3}w_{11}^{2}\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}^{2}\pi _\mathrm{{f}}\mu _\mathrm{{f}}\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\\&+ v_{3}w_{4}w_{11}\beta ^{*}c_\mathrm{{f}}\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}\pi _\mathrm{{f}}\mu _\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) +v_{3}w_{11}^{2}\beta _\mathrm{{m}}^{\ell ^{2}}c_\mathrm{{f}}\mu _\mathrm{{m}}^{2}\pi _\mathrm{{f}}\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\left( 2-\varepsilon _{v}\right) ,\\ M_{22}&= v_{3}w_{11}^{2}\beta _\mathrm{{m}}^{\ell ^{2}}c_\mathrm{{f}}\mu _\mathrm{{m}}^{2}\pi _\mathrm{{f}}+v_{3}w_{11}^{2}\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}^{2}\pi _\mathrm{{f}}\mu _\mathrm{{f}}+v_{3}w_{4}w_{11}\beta ^{*}c_\mathrm{{f}}\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}\pi _\mathrm{{f}}\mu _\mathrm{{f}}\varphi _\mathrm{{m}}^\mathrm{{q}}\varepsilon _{v}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) \\&\quad +\, v_{3}w_{10}w_{11}\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}^{2}\pi _\mathrm{{f}}\mu _\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) +v_{3}w_{11}w_{12}\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}^{2}\pi _\mathrm{{f}}\mu _\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) \\&\quad +\,v_{3}w_{11}w_{13}\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}^{2}\pi _\mathrm{{f}}\mu _\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) +v_{3}w_{11}w_{14}\beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}^{2}\pi _\mathrm{{f}}\mu _\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) \\&\quad +\,v_{10}w_{4}^{2}\beta ^{*^{2}}c_\mathrm{{f}}\pi _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\varphi _\mathrm{{m}}^\mathrm{{q}}\varepsilon _{v}^2\left( 1-\varphi _\mathrm{{m}}^\mathrm{{q}}\right) +v_{10}w_{4}w_{10}\beta ^{*}\pi _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\mu _\mathrm{{m}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) \\&\quad +\,v_{10}w_{4}w_{11}\beta ^{*}\pi _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\mu _\mathrm{{m}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) +v_{10}w_{4}w_{12}\beta ^{*}\pi _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\mu _\mathrm{{m}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) \\&\quad +\, v_{10}w_{4}w_{13}\beta ^{*}\pi _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\mu _\mathrm{{m}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) +v_{10}w_{4}w_{14}\beta ^{*}\pi _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\mu _\mathrm{{m}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) \!. \end{aligned}$$

Thus, the result below follows from Theorem 4.1 of Castillo-Chavez and Song (2004).

Theorem 5.1

The transformed model (47) (or, equivalently, the low-risk-only model (8)) undergoes a backward bifurcation at \(\mathcal {R}_{0}^{\ell }=1\) if the bifurcation coefficient \(a\), given by (49), is positive.

It is clear from the expression for the bifurcation coefficient, \(a\), given by (49), that \(a>0\) whenever (since all the low-risk-only model parameters are positive)

$$\begin{aligned} M_{11}>M_{22}. \end{aligned}$$
(50)

Furthermore, consider the low-risk-only model (8) in the absence of re-infection (\(\rho _\mathrm{{f}}^{\ell }=\rho _\mathrm{{m}}^{\ell }=0\)). Setting \(\rho _\mathrm{{f}}^{\ell }=\rho _\mathrm{{m}}^{\ell }=0\) into the expression for the bifurcation coefficient, \(a\) in (49), and using \(\beta ^*\) for \(\beta _\mathrm{{f}}^{\ell }\) in (48), shows that (here, the eigenvectors \(v_{10}\) and \(w_{10}\) are given the value unity)

$$\begin{aligned} a&= - \frac{2\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) }{\mu _\mathrm{{f}}\pi _\mathrm{{m}}\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) ^{2}}\left[ \varepsilon _{v}\sigma _\mathrm{{m}}^{\ell }\varphi _\mathrm{{f}}^\mathrm{{q}}\psi _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}} \left( 2-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) +\varepsilon _{v}\sigma _\mathrm{{m}}^{\ell }\varphi _\mathrm{{f}}^\mathrm{{q}}\mu _\mathrm{{m}}^{2} \left( 2-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) \right] \nonumber \\&\quad -\, \frac{2\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) }{\mu _\mathrm{{f}}\pi _\mathrm{{m}}\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) ^{2}} \left[ \varepsilon _{v}\sigma _\mathrm{{m}}^{\ell ^{2}}\varphi _\mathrm{{f}}^\mathrm{{q}}\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( 2-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) +\mu _\mathrm{{f}}\mu _\mathrm{{m}} \sigma _\mathrm{{m}}^{\ell ^{2}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) \right] \nonumber \\&\quad -\,\frac{2\mu _\mathrm{{m}}\sigma _\mathrm{{m}}^{\ell }\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( n_\mathrm{{m}}+\mu _\mathrm{{m}}\right) \psi _\mathrm{{m}}^{\ell }}{\pi _\mathrm{{m}}\mu _\mathrm{{f}}\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( \alpha _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( n_\mathrm{{m}}+\mu _\mathrm{{m}}\right) }\left[ r_\mathrm{{m}}^{\ell }\left( \alpha _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) +k_\mathrm{{m}}^{\ell }\alpha _\mathrm{{m}}^{\ell }\left( 1-r_\mathrm{{m}}^{\ell }\right) \right] \nonumber \\&\quad -\,\frac{2\mu _\mathrm{{m}}\sigma _\mathrm{{m}}^{\ell }\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) }{\pi _\mathrm{{m}}\mu _\mathrm{{f}}\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( \alpha _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( n_\mathrm{{m}}+\mu _\mathrm{{m}}\right) }\left[ n_\mathrm{{m}}\left( 1-r_\mathrm{{m}}^{\ell }\right) \psi _\mathrm{{m}}^{\ell }\left( 1-k_\mathrm{{m}}^{\ell }\right) \alpha _\mathrm{{m}}^{\ell }\right] \nonumber \\&\quad -\, \frac{2\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) }{\mu _\mathrm{{f}}\pi _\mathrm{{m}}\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) ^{2}}\left[ \mu _\mathrm{{f}}\mu _\mathrm{{m}}\sigma _\mathrm{{m}}^{\ell }\psi _\mathrm{{m}}^{\ell }\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) +\mu _\mathrm{{f}}\sigma _\mathrm{{m}}^{\ell ^{2}}\psi _\mathrm{{m}}^{\ell }\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) \right] \nonumber \\&\quad -\, \frac{2\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) }{\mu _\mathrm{{f}}\pi _\mathrm{{m}}\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) ^{2}}\left[ \beta _\mathrm{{m}}^{\ell }\mu _\mathrm{{m}}\sigma _\mathrm{{m}}^{\ell ^{2}}c_\mathrm{{f}}\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) +\mu _\mathrm{{f}}\mu _\mathrm{{m}}^{2}\sigma _\mathrm{{m}}^{\ell }\left( 1-\varepsilon _{v}\varphi _\mathrm{{f}}^\mathrm{{q}}\right) ^{2}\right] \nonumber \\&\quad -\,\frac{2\sigma _\mathrm{{m}}^{\ell }\varphi _\mathrm{{m}}^\mathrm{{q}}\varepsilon _{v}\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) ^{2}\left( 1-\varphi _\mathrm{{m}}^\mathrm{{q}}\right) }{\pi _\mathrm{{m}}\mu _\mathrm{{f}}^{2}\left( 1-\varepsilon _{v}\varphi _\mathrm{{m}}^\mathrm{{q}}\right) ^{2}}-\frac{2\mu _\mathrm{{m}}\sigma _\mathrm{{m}}^{\ell }\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) }{\pi _\mathrm{{m}}\mu _\mathrm{{f}}}\left[ 1+\frac{1}{\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) }\right] \nonumber \\&\quad -\,\frac{2\mu _\mathrm{{m}}\sigma _\mathrm{{m}}^{\ell }\left( \sigma _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( 1-r_\mathrm{{m}}^{\ell }\right) \psi _\mathrm{{m}}^{\ell }}{\pi _\mathrm{{m}}\mu _\mathrm{{f}}\left( \psi _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) \left( \alpha _\mathrm{{m}}^{\ell }+\mu _\mathrm{{m}}\right) }\left[ 1+\frac{\left( 1-k_\mathrm{{m}}^{\ell }\right) \alpha _\mathrm{{m}}^{\ell }}{\left( n_\mathrm{{m}}+\mu _\mathrm{{m}}\right) }\right] <0. \end{aligned}$$
(51)

It should be recalled that, in (51), \(0\le \varepsilon _v, \varphi _\mathrm{{f}}^\mathrm{{q}}, \varphi _\mathrm{{m}}^\mathrm{{q}} \le 1\). Hence, it follows from (51) that the bifurcation coefficient, \(a0\), is negative for the low-risk-only model (8) with \(\rho _\mathrm{{f}}^{\ell }=\rho _\mathrm{{m}}^{\ell }=0\). Thus, it follows from Item (iv) of Theorem 4.1 of Castillo-Chavez and Song (2004) that the low-risk-only model (8) does not undergo backward bifurcation in the absence of re-infection of recovered individuals.

6. Proof of Theorem 3.5

Proof

Consider the risk-structured model (3) with \(\rho _\mathrm{{f}}^{\ell }=\rho _\mathrm{{m}}^{\ell }=\rho _\mathrm{{f}}^\mathrm{{h}}=\rho _\mathrm{{m}}^\mathrm{{h}}=\delta _\mathrm{{m}}=0\). The proof is based on using a Comparison Theorem. The equations for the infected components of the model (3) can be written as (it should be mentioned that system (52) satisfies the Type K condition discussed in Smith (1995)):

$$\begin{aligned} \frac{\mathrm{{d}}}{\mathrm{{d}}t}\left( \begin{array}{c} E_\mathrm{{f}}^{\ell }(t)\\ I_\mathrm{{f}}^{\ell }(t)\\ P_\mathrm{{f}}^{\ell }(t)\\ W_\mathrm{{f}}^{\ell }(t)\\ E_\mathrm{{f}}^\mathrm{{h}}(t)\\ I_\mathrm{{f}}^\mathrm{{h}}(t)\\ P_\mathrm{{f}}^\mathrm{{h}}(t)\\ G_\mathrm{{f}\ell }(t)\\ G_\mathrm{{fh}}(t)\\ C_\mathrm{{f}}^\mathrm{{c}}(t)\\ E_\mathrm{{m}}^{\ell }(t)\\ I_\mathrm{{m}}^{\ell }(t)\\ P_\mathrm{{m}}^{\ell }(t)\\ W_\mathrm{{m}}(t)\\ E_\mathrm{{m}}^\mathrm{{h}}(t)\\ I_\mathrm{{m}}^\mathrm{{h}}(t)\\ P_\mathrm{{m}}^\mathrm{{h}}(t)\\ G_\mathrm{{m}\ell }(t)\\ G_\mathrm{{mh}}(t)\\ C_\mathrm{{m}}^\mathrm{{r}}(t) \end{array}\right) = \left( \mathcal {F}_\mathrm{{r}}-\mathcal {H}_\mathrm{{r}}\right) \left( \begin{array}{c} E_\mathrm{{f}}^{\ell }(t)\\ I_\mathrm{{f}}^{\ell }(t)\\ P_\mathrm{{f}}^{\ell }(t)\\ W_\mathrm{{f}}^{\ell }(t)\\ E_\mathrm{{f}}^\mathrm{{h}}(t)\\ I_\mathrm{{f}}^\mathrm{{h}}(t)\\ P_\mathrm{{f}}^\mathrm{{h}}(t)\\ G_\mathrm{{f}\ell }(t)\\ G_\mathrm{{fh}}(t)\\ C_\mathrm{{f}}^\mathrm{{c}}(t)\\ E_\mathrm{{m}}^{\ell }(t)\\ I_\mathrm{{m}}^{\ell }(t)\\ P_\mathrm{{m}}^{\ell }(t)\\ W_\mathrm{{m}}(t)\\ E_\mathrm{{m}}^\mathrm{{h}}(t)\\ I_\mathrm{{m}}^\mathrm{{h}}(t)\\ P_\mathrm{{m}}^\mathrm{{h}}(t)\\ G_\mathrm{{m}\ell }(t)\\ G_\mathrm{{mh}}(t)\\ C_\mathrm{{m}}^\mathrm{{r}}(t) \end{array}\right) -\mathcal {J}_\mathrm{{r}}\left( \begin{array}{c} E_\mathrm{{f}}^{\ell }(t)\\ I_\mathrm{{f}}^{\ell }(t)\\ P_\mathrm{{f}}^{\ell }(t)\\ W_\mathrm{{f}}^{\ell }(t)\\ E_\mathrm{{f}}^\mathrm{{h}}(t)\\ I_\mathrm{{f}}^\mathrm{{h}}(t)\\ P_\mathrm{{f}}^\mathrm{{h}}(t)\\ G_\mathrm{{f}\ell }(t)\\ G_\mathrm{{fh}}(t)\\ C_\mathrm{{f}}^\mathrm{{c}}(t)\\ E_\mathrm{{m}}^{\ell }(t)\\ I_\mathrm{{m}}^{\ell }(t)\\ P_\mathrm{{m}}^{\ell }(t)\\ W_\mathrm{{m}}(t)\\ E_\mathrm{{m}}^\mathrm{{h}}(t)\\ I_\mathrm{{m}}^\mathrm{{h}}(t)\\ P_\mathrm{{m}}^\mathrm{{h}}(t)\\ G_\mathrm{{m}\ell }(t)\\ G_\mathrm{{mh}}(t)\\ C_\mathrm{{m}}^\mathrm{{r}}(t) \end{array}\right) , \end{aligned}$$
(52)

where the matrices \(\mathcal {F}_\mathrm{{r}}\) and \(\mathcal {H}_\mathrm{{r}}\) are as defined in Sect. 3.1, and

$$\begin{aligned} \mathcal {J}_\mathrm{{r}}&= \left[ \frac{S_\mathrm{{f}}^{*}+V_\mathrm{{f}}^{b^{*}}+\left( 1-\varepsilon _{v}\right) V_\mathrm{{f}}^{q^*}}{N_\mathrm{{m}}^{*}}-\frac{S_\mathrm{{f}}+V_\mathrm{{f}}^\mathrm{{q}}+\left( 1-\varepsilon _{v}\right) V_\mathrm{{f}}^\mathrm{{q}}}{N_\mathrm{{m}}^{*}}\right] \mathcal {J}_{1r}\\&+\left[ \frac{S_\mathrm{{f}}^{*}+\left( 1 -\varepsilon _{v}\right) V_\mathrm{{f}}^{b^{*}} +\left( 1-\varepsilon _{v}\right) V_\mathrm{{f}}^{q^*}}{N_\mathrm{{m}}^{*}} -\frac{S_\mathrm{{f}}+\left( 1-\varepsilon _{v}\right) V_\mathrm{{f}}^\mathrm{{q}} +\left( 1-\varepsilon _{v}\right) V_\mathrm{{f}}^\mathrm{{q}}}{N_\mathrm{{m}}^{*}}\right] \mathcal {J}_{2r}\\&+\left[ \frac{S_\mathrm{{m}}^{*}+\left( 1-\varepsilon _{v}\right) V_\mathrm{{m}}^{q^*}}{N_\mathrm{{m}}^{*}}-\frac{S_\mathrm{{m}}+\left( 1-\varepsilon _{v}\right) V_\mathrm{{m}}^\mathrm{{q}}}{N_\mathrm{{m}}^{*}}\right] \left( \mathcal {J}_{3r}+\mathcal {J}_{4r}\right) , \end{aligned}$$

where

$$\begin{aligned} \mathcal {J}_{1r}&= \left( \begin{array}{c@{\quad }c} \mathbf{0}_{10 \times 10} &{} \mathcal {J}_{1}\\ \mathbf{0}_{10 \times 10}&{} \mathbf{0}_{10 \times 10} \end{array}\right) , \quad \mathcal {J}_{2r}=\left( \begin{array}{c@{\quad }c} \mathbf{0}_{10 \times 10} &{}\mathcal {J}_{2}\\ \mathbf{0}_{10 \times 10} &{}\mathbf{0}_{10 \times 10}\end{array}\right) ,\\ \mathcal {J}_{3r}&= \left( \begin{array}{c@{\quad }c} \mathbf{0}_{10 \times 10} &{} \mathbf{0}_{10 \times 10} \\ \mathcal {J}_{3}&{} \mathbf{0}_{10 \times 10} \end{array}\right) \quad \mathrm{and} \quad \mathcal {J}_{4r}=\left( \begin{array}{c@{\quad }c} \mathbf{0}_{10 \times 10} &{}\mathbf{0}_{10 \times 10} \\ \mathcal {J}_{4}&{}\mathbf{0}_{10 \times 10}\end{array}\right) , \end{aligned}$$

with

$$\begin{aligned} \mathcal {J}_{1}&= \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\eta _\mathrm{{m}}^{\ell }&{} \beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}&{} \beta _\mathrm{{m}}^{\ell }c_\mathrm{{f}}\theta _\mathrm{{m}}^{\ell }&{}0 &{}0&{}0&{}0&{}0&{}0&{}0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0&{}0&{}0&{}0&{}0&{} 0&{} 0&{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\end{array}\right) ,\\ \mathcal {J}_{2}&= \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&{}0 &{} 0&{}0 &{}0&{}0&{}0&{}0&{}0&{}0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0&{}0&{}0&{}0&{}\beta _\mathrm{{m}}^\mathrm{{h}}c_\mathrm{{f}}\eta _\mathrm{{m}}^\mathrm{{h}}&{} \beta _\mathrm{{m}}^\mathrm{{h}}c_\mathrm{{f}}&{} \beta _\mathrm{{m}}^\mathrm{{h}}c_\mathrm{{f}}\theta _\mathrm{{m}}^\mathrm{{h}}&{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\end{array}\right) , \end{aligned}$$
$$\begin{aligned} \mathcal {J}_{3}&= \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \beta _\mathrm{{f}}^{\ell }c_\mathrm{{f}}\eta _\mathrm{{f}}^{\ell }&{} \beta _\mathrm{{f}}^{\ell }c_\mathrm{{f}} &{} \beta _\mathrm{{f}}^{\ell }c_\mathrm{{f}}\theta _\mathrm{{f}}^{\ell }&{}0 &{}0&{}0&{}0&{}0&{}0&{}0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0&{}0&{}0&{}0&{}0&{} 0&{} 0&{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\end{array}\right) , \end{aligned}$$

and

$$\begin{aligned} \mathcal {J}_{4}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0&{} 0 &{} 0&{}0 &{}0&{}0&{}0&{}0&{}0&{}0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0&{}0&{}0&{}0&{}\beta _\mathrm{{f}}^\mathrm{{h}}c_\mathrm{{f}}\eta _\mathrm{{f}}^\mathrm{{h}}&{} \beta _\mathrm{{f}}^\mathrm{{h}}c_\mathrm{{f}}&{} \beta _\mathrm{{f}}^\mathrm{{h}}c_\mathrm{{f}}\theta _\mathrm{{f}}^\mathrm{{h}}&{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0 &{} 0&{} 0&{} 0&{} 0&{} 0\end{array}\right) . \end{aligned}$$

It should be noted that \(\mathcal {J}_{1r}, \mathcal {J}_{2r}, \mathcal {J}_{3r} \) and \(\mathcal {J}_{4r} \) are non-negative matrices. Furthermore, since

$$\begin{aligned} S_\mathrm{{f}}(t)\le S_\mathrm{{f}}^*(t),\;\; V_\mathrm{{f}}^\mathrm{{b}}(t)\le V_\mathrm{{f}}^{b^{*}}(t), \;\; V_\mathrm{{f}}^\mathrm{{q}}(t)\le V_\mathrm{{f}}^{q^{*}}(t), \end{aligned}$$

and

$$\begin{aligned} S_\mathrm{{m}}(t)\le S_\mathrm{{m}}^*(t), \;\; V_\mathrm{{m}}^\mathrm{{q}}(t)\le V_\mathrm{{m}}^{q^{*}}(t), \end{aligned}$$

\(\mathrm{(for\; all\; t\ge 0\; in\; \mathcal {D}_\mathrm{{r}}^{*})},\) the matrix \( \mathcal {J}_\mathrm{{r}}\) is non-negative. Thus, it follows from (52) that

$$\begin{aligned} \frac{\mathrm{{d}}}{\mathrm{{d}}t}\left( \begin{array}{c} E_\mathrm{{f}}^{\ell }(t)\\ I_\mathrm{{f}}^{\ell }(t)\\ P_\mathrm{{f}}^{\ell }(t)\\ W_\mathrm{{f}}^{\ell }(t)\\ E_\mathrm{{f}}^\mathrm{{h}}(t)\\ I_\mathrm{{f}}^\mathrm{{h}}(t)\\ P_\mathrm{{f}}^\mathrm{{h}}(t)\\ G_\mathrm{{f}\ell }(t)\\ G_\mathrm{{fh}}(t)\\ C_\mathrm{{f}}^\mathrm{{c}}(t)\\ E_\mathrm{{m}}^{\ell }(t)\\ I_\mathrm{{m}}^{\ell }(t)\\ P_\mathrm{{m}}^{\ell }(t)\\ W_\mathrm{{m}}(t)\\ E_\mathrm{{m}}^\mathrm{{h}}(t)\\ I_\mathrm{{m}}^\mathrm{{h}}(t)\\ P_\mathrm{{m}}^\mathrm{{h}}(t)\\ G_\mathrm{{m}\ell }(t)\\ G_\mathrm{{mh}}(t)\\ C_\mathrm{{m}}^\mathrm{{r}}(t) \end{array}\right) \le \left( \mathcal {F}_\mathrm{{r}}-\mathcal {H}_\mathrm{{r}}\right) \left( \begin{array}{c} E_\mathrm{{f}}^{\ell }(t)\\ I_\mathrm{{f}}^{\ell }(t)\\ P_\mathrm{{f}}^{\ell }(t)\\ W_\mathrm{{f}}^{\ell }(t)\\ E_\mathrm{{f}}^\mathrm{{h}}(t)\\ I_\mathrm{{f}}^\mathrm{{h}}(t)\\ P_\mathrm{{f}}^\mathrm{{h}}(t)\\ G_\mathrm{{f}\ell }(t)\\ G_\mathrm{{fh}}(t)\\ C_\mathrm{{f}}^\mathrm{{c}}(t)\\ E_\mathrm{{m}}^{\ell }(t)\\ I_\mathrm{{m}}^{\ell }(t)\\ P_\mathrm{{m}}^{\ell }(t)\\ W_\mathrm{{m}}(t)\\ E_\mathrm{{m}}^\mathrm{{h}}(t)\\ I_\mathrm{{m}}^\mathrm{{h}}(t)\\ P_\mathrm{{m}}^\mathrm{{h}}(t)\\ G_\mathrm{{m}\ell }(t)\\ G_\mathrm{{mh}}(t)\\ C_\mathrm{{m}}^\mathrm{{r}}(t) \end{array}\right) . \end{aligned}$$
(53)

Using the fact that the eigenvalues of the matrix \(\mathcal {F}_\mathrm{{r}}-\mathcal {H}_\mathrm{{r}}\) all have negative real parts (see local stability result in Sect. 3.1, where \(\rho (\mathcal {F}_\mathrm{{r}}\mathcal {H}_\mathrm{{r}}^{-1})<1\) if \(\mathcal {R}_{01}^\mathrm{{r}}<1\), which is equivalent to \(\mathcal {F}_\mathrm{{r}}-\mathcal {H}_\mathrm{{r}}\) having eigenvalues with negative real parts when \(\mathcal {R}_{01}^\mathrm{{r}}<1\)van den Driessche and Watmough 2002), it follows that the linearized differential inequality system (53) is stable whenever \(\mathcal {R}_{01}^\mathrm{{r}}<1\). Thus, it follows, by Comparison Theorem (Lakshmikantham et al. 1989), that

$$\begin{aligned}&\lim _{t\rightarrow \infty }\;\;(E_\mathrm{{f}}^{\ell }(t),I_\mathrm{{f}}^{\ell }(t), P_\mathrm{{f}}^{\ell }(t),W_\mathrm{{f}}^{\ell }(t),E_\mathrm{{f}}^\mathrm{{h}}(t),I_\mathrm{{f}}^\mathrm{{h}}(t),P_\mathrm{{f}}^\mathrm{{h}}(t),G_\mathrm{{f}\ell }(t), G_\mathrm{{fh}}(t),C_\mathrm{{f}}^\mathrm{{c}}(t),E_\mathrm{{m}}^{\ell }(t),\\&\quad I_\mathrm{{m}}^{\ell }(t), P_\mathrm{{m}}^{\ell }(t),W_\mathrm{{m}}(t), E_\mathrm{{m}}^\mathrm{{h}}(t), I_\mathrm{{m}}^\mathrm{{h}}(t),P_\mathrm{{m}}^\mathrm{{h}}(t),G_\mathrm{{m}\ell }(t),G_\mathrm{{mh}}(t),C_\mathrm{{m}}^\mathrm{{r}}(t))\\&\quad =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). \end{aligned}$$

Substituting \(E_\mathrm{{f}}^{\ell }=I_\mathrm{{f}}^{\ell }=P_\mathrm{{f}}^{\ell }=W_\mathrm{{f}}^{\ell }=E_\mathrm{{f}}^\mathrm{{h}}=I_\mathrm{{f}}^\mathrm{{h}}=P_\mathrm{{f}}^\mathrm{{h}}=G_\mathrm{{f}\ell }=G_\mathrm{{fh}}=C_\mathrm{{f}}^\mathrm{{c}}=E_\mathrm{{m}}^{\ell }\)=\(I_\mathrm{{m}}^{\ell }=P_\mathrm{{m}}^{\ell }=W_\mathrm{{m}}=E_\mathrm{{m}}^\mathrm{{h}}= I_\mathrm{{m}}^\mathrm{{h}}=P_\mathrm{{m}}^\mathrm{{h}}=G_\mathrm{{m}\ell }=G_\mathrm{{mh}}=C_\mathrm{{m}}^\mathrm{{r}}=0\) into the equations of the model (3) gives \(S_\mathrm{{f}}(t)\rightarrow S_\mathrm{{f}}^{*}, V_\mathrm{{f}}^\mathrm{{b}}(t)\rightarrow V_\mathrm{{f}}^{b^{*}}, V_\mathrm{{f}}^\mathrm{{q}}(t)\rightarrow V_\mathrm{{f}}^{q^{*}},\) \(S_\mathrm{{m}}(t)\rightarrow S_\mathrm{{m}}^{*}\) and \(V_\mathrm{{m}}^\mathrm{{q}}(t)\rightarrow V_\mathrm{{m}}^{q^{*}}\), as \(t\rightarrow \infty \) for \(\mathcal {R}_{01}^\mathrm{{r}}<1\). Thus,

$$\begin{aligned}&\lim _{t\rightarrow \infty }\;\;(S_\mathrm{{f}}(t), V_\mathrm{{f}}^\mathrm{{b}}(t), V_\mathrm{{f}}^\mathrm{{q}}(t),E_\mathrm{{f}}^{\ell }(t),I_\mathrm{{f}}^{\ell }(t),P_\mathrm{{f}}^{\ell }(t),W_\mathrm{{f}}^{\ell }(t),E_\mathrm{{f}}^\mathrm{{h}}(t),I_\mathrm{{f}}^\mathrm{{h}}(t),P_\mathrm{{f}}^\mathrm{{h}}(t),G_\mathrm{{f}\ell }(t),\\&G_\mathrm{{fh}}(t),C_\mathrm{{f}}^\mathrm{{c}}(t),S_\mathrm{{m}}(t), V_\mathrm{{m}}^\mathrm{{q}}(t),E_\mathrm{{m}}^{\ell }(t),I_\mathrm{{m}}^{\ell }(t), P_\mathrm{{m}}^{\ell }(t),W_\mathrm{{m}}(t),E_\mathrm{{m}}^\mathrm{{h}}(t),\\&I_\mathrm{{m}}^\mathrm{{h}}(t),P_\mathrm{{m}}^\mathrm{{h}}(t),G_\mathrm{{m}\ell }(t),G_\mathrm{{mh}}(t),C_\mathrm{{m}}^\mathrm{{r}}(t))=\mathcal {E}_{0}^\mathrm{{r}}, \end{aligned}$$

so that the DFE, \(\mathcal {E}_{0}^\mathrm{{r}}\), of the model (3) is GAS in \(\mathcal {D}_\mathrm{{r}}^{*}\) whenever \(\mathcal {R}_{01}^\mathrm{{r}}<1\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaleh, A.A., Gumel, A.B. Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types. Bull Math Biol 76, 1670–1726 (2014). https://doi.org/10.1007/s11538-014-9972-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9972-4

Keywords

Navigation