Skip to main content

A Mathematical Study of a Model for HPV with Two High-Risk Strains

  • Chapter
  • First Online:
Mathematical Modelling in Health, Social and Applied Sciences

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

Abstract

A new two-sex deterministic model for two strains (HPV type 16/18 and type 31/45) of human papillomavirus (HPV) infection is designed and rigorously analyzed to gain insights into its transmission dynamics. The model features the use of the bivalent Cervarix vaccine targeted at one group of high-risk HPV: type 16/18 but with cross-immunity property against other high-risk HPV; and type 31/45. The model is shown to exhibit the phenomenon of backward bifurcation, where a stable disease-free equilibrium (DFE) coexists with one or more stable endemic equilibria when the associated reproduction number is less than unity. It is further shown that the backward bifurcation phenomenon is caused by the imperfect vaccine as well as the reinfection of individuals who recover naturally from previous infection with the same strain of the disease. Numerical simulations of the model reveal that increasing the fraction of vaccinated females against strain 1 (HPV type 16/18) infection could significantly bring down the burden of strain 2 (HPV type 31/45) infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, GLobal cancer statistics. Cancer J. Clin. 61(2), 69–90 (2011)

    Article  Google Scholar 

  2. C. Clendinen, Y. Zhang, R.W. Warburton, D.W. Light, Manufacturing costs of HPV vaccines for developing countries. Vaccine 34, 5984–5989 (2016)

    Article  Google Scholar 

  3. H.G. Ahmed, S.H. Bensumaidea, I.M. Ashankyty, Frequency of human papillomavirus (HPV) subtypes 31, 33, 35, 39 and 45 among Yemeni women with cervical cancer. Infect. Agents Cancer 10(29), 1–6 (2015)

    Google Scholar 

  4. V. Kumar, A.K. Abbas, N. Fausto, R. Mitchell, Chapter 19 The female genital system and breast, in Robbins Basic Pathology, 8th edn. (Saunders, Philadelphia, 2007). ISBN 1-4160-2973-7

    Google Scholar 

  5. K.A. Ault, Human Papilloma Virus vaccines and the potential for cross-protection between related HPV types. Gynecol. Oncol. 107, S31–S33 (2007)

    Article  Google Scholar 

  6. J.S. Smith, L. Lindsay, B. Hoots, J. Keys, S. Franceschi, R. Winer, Human Papilloma Virus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int. J. Cancer 121(3), 621–632 (2007)

    Article  Google Scholar 

  7. N. Munoz, F.X. Bosch, X. Castellsague, M. Diaz, S. de Sanjosé, D. Hammouda, Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int. J. Cancer 111(2), 278–285 (2004)

    Article  Google Scholar 

  8. K. Thomas, J. Hughes, J. Kuypers, N. Kiviat, S.-K. Lee, Concurrent and sequential acquisition of different genital human papillomavirus types. J. Infect. Dis. 182, 1097 (2000)

    Article  Google Scholar 

  9. K.-L. Liaw, A. Hildesheim, R. Burk, P. Gravitt, S. Wacholder, A prospective study of human papillomavirus (HPV) type 16 DNA detection by polymerase chain reaction and its association with acquisition and persistence of other HPV types. J. Infect. Dis. 183, 8 (2001)

    Article  Google Scholar 

  10. G.Y.F. Ho, Y. Studentsov, C.B. Hall, R. Bierman, L. Beardsley, Risk factors for subsequent cervicovaginal human papillomavirus (HPV) infection and the protective role of antibodies to HPV-16 virus-like particles. J. Infect. Dis. 186, 737 (2002)

    Article  Google Scholar 

  11. E.-M. de Villers, C. Fauquet, C. Broker, H.-U. Bernard, H. zur Harsen, Classification of human papillomavirus. Virology 324, 17–27 (2004)

    Article  Google Scholar 

  12. A. Harari, Z. Chen, A. Rodriguez, A.C. Hildesheim, C. Porras, R. Herrero, S. Wacholder, O.A. Panagiotou, B. Befano, R.D. Burk, M. Schiffman, Cross-protection of the bivalent Human papillomavirus (HPV) vaccine against variants of genetically related high-risk HPV infections. J. Infect. Dis. 213, 939–947 (2016)

    Article  Google Scholar 

  13. J.M.L. Brotherton, Confirming cross-protection of bivalent HPV vaccine. Lancet Inf. Dis. 17(12), 1227–1228 (2017)

    Article  Google Scholar 

  14. K. Kavanagh, K.G. Pollock, K. Cuschieri, Changes in the prevalence of Human Papillomavirus vaccination programme in Scotland: a 7-year cross-sectional study. Lancet Infect. Dis. 17, 1293–1302 (2017)

    Google Scholar 

  15. P.J. Woestenberg, A.J. King, B.H.B. van Benthem, Bivalent vaccine effectiveness against type-specific oncogenic types among Dutch STI clinic visitors. J. Infect. Dis. 217, 213–222 (2018)

    Article  Google Scholar 

  16. P. van Damme, P. Bonanni, X. Bosch, E. Joura, S.K. Kjaer, C.J.L.M. Meijer, K.-U. Petry, B. Soubeyrand, T. Verstraeten, M. Stanley, Use of the nonavalent HPV vaccine in individuals previously fully or partially vaccinated with bivalent or quadrivalent HPV vaccines. Vaccine 34, 757–761 (2016)

    Article  Google Scholar 

  17. J. Bornstein, The HPV vaccine market: Cervarix competes with Gardasil. Therapy 7(1), 71–75 (2010)

    Article  MathSciNet  Google Scholar 

  18. R. Kudo, M. Yamaguchi, M. Sekine, S. Adachi, Y. Ueda, E. Miyagi, M. Hara, S.J.B. Hanley, T. Enomoto, Bivalent Human papillomavirus vaccine effectiveness in a Japanese population: high vaccine type-specific effectiveness and evidence of cross-protection. J. Infect. Dis. (2018)

    Google Scholar 

  19. F.B. Agusto, A.B. Gumel, Qualitative dynamics of lowly- and highly-pathogenic Avian influenza strains. Math. Biosci. 243, 147–162 (2013)

    Article  MathSciNet  Google Scholar 

  20. A.A. Alsaleh, A.B. Gumel, Analysis of a risk-structured vaccination model for the dynamics of oncogenic and warts-causing HPV types. Bull. Math. Biol. 76, 1670–1726 (2014)

    Article  MathSciNet  Google Scholar 

  21. E.H. Elbasha, A.P. Galvani, Vaccination against multiple HPV types. Math. Biosci. 197, 88–117 (2005)

    Article  MathSciNet  Google Scholar 

  22. E.H. Elbasha, E.J. Dasbach, R.P. Insinga, A multi-type HPV transmission model. Bull. Math. Biol. 70(8), 2126–2176 (2008)

    Article  MathSciNet  Google Scholar 

  23. D. Okuonghae, A.B. Gumel, M.A. Safi, Dynamics of a two-strain vaccination model for polio. Nonlinear Anal. Real World Appl. 25, 167–189 (2015)

    Article  MathSciNet  Google Scholar 

  24. S.M. Garba, M.A. Safi, A.B. Gumel, Cross-immunity induced backward bifurcation for a model of transmission dynamics of two strains of influenza. Nonlinear Anal. Real World Appl. 14, 1384–1403 (2013)

    Article  MathSciNet  Google Scholar 

  25. C. Castillo-Chavez, W. Huang, Li, The effects of females’ susceptibility on the coexistence of multiple pathogen strains of sexually transmitted diseases. J. Math. Biol. 35, 503–522 (1997)

    Article  MathSciNet  Google Scholar 

  26. J. Dushoff, H. Wenzhang, C. Castillo-Chavez, Backward bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol. 36, 227–248 (1998)

    Article  MathSciNet  Google Scholar 

  27. P. Bonanni, S. Boccalini, A. Bechini, Efficacy, duration of immunity and cross protection after HPV vaccination: a review of evidence. Vaccine 27, A46–A53 (2009)

    Article  Google Scholar 

  28. S. Lakshmikantham, S. Leela, A.A. Martynyuk, Stability Analysis of Nonlinear Systems (Marcel Dekker Inc., New York, 1989)

    Google Scholar 

  29. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  30. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 2, 361–404 (2004)

    Article  MathSciNet  Google Scholar 

  31. O. Sharomi, T. Malik, A model to assess the effect of vaccine compliance on Human Papilloma Virus infection and Cervical Cancer. Appl. Math. Model. 47, 528–550 (2017)

    Article  MathSciNet  Google Scholar 

  32. A. Omame, R.A. Umana, D. Okuonghae, S.C. Inyama, Mathematical analysis of a two-sex Human Papillomavirus (HPV) model. Int. J. Biomath. 11, 7 (2018)

    Article  MathSciNet  Google Scholar 

  33. D. Foreman, C. de Martel, C.J. Lacey, I. Soerjomataram, J. Lortet-Tieulent, L. Bruni, J. Vignat, Ferlay j, Bray F, Plummer M, Franceschi S, Global burden of human pappilomavirus and related diseases. Vaccine 30S, F12–F23 (2012)

    Article  Google Scholar 

  34. Human Papillomavirus and Related Diseases Report, ICO/IARC Information Centre on HPV and Cancer (2017). www.hpvcentre.net. Accessed: 21 Aug. 2018

    Google Scholar 

  35. J. La Salle, S. Lefschetz, The Stability of Dynamical Systems (SIAM, Philadelphia, 1976)

    Google Scholar 

  36. S.M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 2, 229–243 (1994)

    Article  Google Scholar 

  37. CIA World Factbook, South Africa Demographics Profile (2016). www.indexmundi.com/southafrica/demographics-profile_html. Accessed 24 Dec. 2016

  38. Human Papillomavirus, Related Cancers, Fact Sheet, South Africa summary report (2016). www.hpvcentre.netAccessed: 26 Dec. 2016

  39. Z.Z. Mbulawa, L.F. Johnson, D.J. Marais, I. Gustavsson, J.R. Moodley, D. Coetzee, U. Gyllensten, A.L. Williamson, Increased alpha-9 human papillomavirus species viral load in human immunodeficiency virus positive women. BioMed. Central (BMC) Infect. Dis. 14(51) (2014)

    Google Scholar 

  40. T.B. Olesen, C. Munk, J. Christensen, K.K. Andersen, S.K. Kjaer, Human Papilloma Virus prevalence among men in sub-saharan Africa: a systematic review and meta-analysis. Sex. Transm. Infect. 90, 455–462 (2014)

    Article  Google Scholar 

  41. A.A. Alsaleh, A.B. Gumel, Dynamics of a vaccination model for HPV transmission. J. Biol. Syst. 22(4), 555–599 (2014)

    Article  MathSciNet  Google Scholar 

  42. M.T. Malik, J. Reimer, A.B. Gumel, E.H. Elbasha, S.M. Mahmud, The impact of an imperfect vaccine and pap cytology screening on the transmission of Human Papillomavirus and occurrence of associated cervical dysplasia and cancer. Math. Biosci. Eng. 10(4) (2013)

    Google Scholar 

  43. E.H. Elbasha, E.J. Dasbach, R.P. Insinga, Model for assessing Human Papillomavirus vaccination strategies. Emerg. Infect. Dis. 31(1), 28–41 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Okuonghae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omame, A., Okuonghae, D., Inyama, S.C. (2020). A Mathematical Study of a Model for HPV with Two High-Risk Strains. In: Dutta, H. (eds) Mathematical Modelling in Health, Social and Applied Sciences. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2286-4_4

Download citation

Publish with us

Policies and ethics