Skip to main content

Advertisement

Log in

Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an \(n\) patch system is presented. The disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. For a two patch case, the boundary equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when there is no movement between the patches are shown to be locally asymptotically stable when they exist; the co-existence equilibrium is locally asymptotically stable whenever the reproduction number for the drug sensitive malaria is greater than the reproduction number for the resistance malaria. Furthermore, numerical simulations of the connected two patch model (when there is movement between the patches) suggest that co-existence or competitive exclusion of the two strains can occur when the respective reproduction numbers of the two strains exceed unity. With slow movement (or low migration) between the patches, the drug sensitive strain dominates the drug resistance strain. However, with fast movement (or high migration) between the patches, the drug resistance strain dominates the drug sensitive strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams B, Kapan DD (2009) Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS One 4(8):e6763

    Article  Google Scholar 

  • Anderson RM, May R (1991) Infectious diseases of humans. Oxford University Press, New York

    Google Scholar 

  • Aneke SJ (2002) Mathematical modelling of drug resistant malaria parasites and vector populations. Math Methods Appl Sci 25:335–346

  • Ariey F, Robert V (2003) The puzzling links between malaria transmission and drug resistance. Trends Parasitol 19(4):158–160

    Article  Google Scholar 

  • Ariey F, Duchemin JB, Robert V (2003) Metapopulation concepts applied to falciparum malaria and their impact on the emergence and spread of chloroquine resistance. Infect Genet Evol 2:185–192

    Article  Google Scholar 

  • Arino J, van den Driessche P (2003) A multi-city epidemic model. Math Popul Stud 10:175–193

    Article  MathSciNet  MATH  Google Scholar 

  • Arino J, van den Driessche P (2003) The basic reproducton number in a multi-city compartment model. LNCIS 294:135–142

    MATH  Google Scholar 

  • Arino J, Ducrot A, Zongo P (2012) A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J Math Biol 64(3):423–448

    Article  MathSciNet  MATH  Google Scholar 

  • Auger P, Kouokam E, Sallet G, Tchuente M, Tsanou B (2008) The Ross–Macdonald model in a patchy environment. Math Biosci 216:123–131

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaer N, Sokna C (2005) A reaction–diffusion system modeling the spread of resistance to an antimalarial drug. Math Biosci Eng 2:227–238

    Article  MathSciNet  Google Scholar 

  • Bowman C, Gumel AB, van den Driessche P, Wu J, Zhu H (2005) A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol 67:1107–1133

    Article  MathSciNet  Google Scholar 

  • Breman JG, Holloway CN (2007) Malaria surveillance counts. Am J Trop Med Hyg 77:36–47

    Google Scholar 

  • Bush AO, Fernandez JC, Esch GW, Seedv JR (2001) Parasitism: the diversity and ecology of animal parasites, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Carrara VI, Sirilak S, Thonglairuam J, Rojanawatsirivet C (2006) Deployment of early diagnosis and mefloquine–artesunate treatment of falciparum malaria in Thailand: The Tak malaria initiative. PLoS Med 3(6):e183

    Article  Google Scholar 

  • Carrara VI, Zwang J, Ashley EA, Price RN et al (2009) Changes in the treatment responses to artesunate–mefloquine on the northwestern border of Thailand during 13 Years of continuous deployment. PLoS One 4:e4551

    Article  Google Scholar 

  • Cheeseman IH, Miller BA, Nair S, Nkhoma S et al (2012) A major genome region underlying artemisinin resistance in malaria. Science 336:79–82. doi:10.1126/science.1215966

    Article  Google Scholar 

  • Chitnis N, Cushing JM, Hyman JM (2006) Bifurcation analysis of a mathematical model for malaria transmission. SIAM J Appl Math 67:24–45

    Article  MathSciNet  MATH  Google Scholar 

  • Chiyaka C, Tchuenche JM, Garira W, Dube S (2008) A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria. Appl Math Comput 195:641–662

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner C, Beier JC, Cantrell RS, Impoinvil D, Kapitanski L, Potts MD, Troyo A, Ruan S (2009) The effects of human movement on the persistence of vector-borne diseases. J Theor Biol 258(4):550–560. doi:10.1016/j.jtbi.2009.02.016

    Article  MathSciNet  Google Scholar 

  • Denis MB, Tsuyuoka R, Lim P, Lindegardh N et al (2006) Efficacy of artemetherlumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health 11(12):1800–1807. doi:10.1111/j.1365-3156.2006.01739.x

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAP (1990) On the definition and computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:503–522

    Article  MathSciNet  MATH  Google Scholar 

  • Dietz K (1988) Mathematical models for transmission and control of malaria. In: Wensdorfer WH, McGregor I (eds) Malaria. Churchill Livingstone, Edinburgh, pp 1091–1133

    Google Scholar 

  • Dondorp AM, Nosten F, Yi P, Das D et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. The N Engl J Med 361(5):455–467

    Article  Google Scholar 

  • Esteva L, Vargas C (2000) Influence of vertical and mechanical transmission on the dynamics of dengue disease. Math Biosci 167:51–64

    Article  MATH  Google Scholar 

  • Esteva L, Gumel AB (2009) Qualitative study of transmission dynamics of drug-resistant malaria. Math Comput Model 50:611–630

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Z, Yinfei Y, Zhu H (2004) Fast and slow dynamics of malaria and the s-gene frequency. J Dyn Differ Equ 16:869–895

    Article  MathSciNet  MATH  Google Scholar 

  • Flahault A, Le Menach A, McKenzie EF, Smith DL (2005) The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmissionn. Malar J 4(1):23

    Article  Google Scholar 

  • Grimwade K, French N, Mbatha DD, Zungu DD, Dedicoat M, Gilks CF (2004) HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa. AIDS 18:547–554

    Article  Google Scholar 

  • Hastings IM (1997) A model for the origins and spread of drug resistant malaria. Parasitol 115:133–141

    Article  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Hsieh Y, van den Driessche P, Wang L (2007) Impact of travel between patches for spatial spread of disease. Bull Math Biol 69:1355–1375

    Article  MathSciNet  MATH  Google Scholar 

  • Koella JC, Antia R (2003) Epidemiological models for the spread of antimalarial resistance. Malar J 2:3

    Article  Google Scholar 

  • Lakshmikantham V, Leela S, Martynyuk AA (1989) Stability analysis of nonlinear systems. Marcel Dekker, New York and Basel

    MATH  Google Scholar 

  • Le Menach A, Ellis Mckenzie F (2005) The unexpected importance of mosquito oviposition behaviour for malaria: non-producive larval habitats can be sources for malaria transmission. Malar J 4(1):23

    Article  Google Scholar 

  • Lindsay SW, Martens WJM (1998) Malaria in the African highlands: past, present and future. Bull WHO 76:33–45

    Google Scholar 

  • Mackinnon MJ (2005) Drug resistance models for malaria. Acta Trop 94:207–217

    Article  Google Scholar 

  • Mbogob CM, Gu W, Killeena GF (2003) An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya. Trans R Soc Trop Med Hyg 97:43–50

    Article  Google Scholar 

  • Molineaux L, Gramiccia G (1980) The Garki project. World Health Organization, Geneva

    Google Scholar 

  • Niger AM, Gumel AB (2008) Mathematical analysis of the role of repeated exposure on malaria transmission dynamics. Differ Equ Dyn Syst 16(3):251–287

    Article  MathSciNet  MATH  Google Scholar 

  • Phyo AP, Nkhoma S, Stepniewska K, Ashley EA et al (2012) Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379:1960–1966. doi:10.1016/S0140-6736(12)60484-X

    Article  Google Scholar 

  • Pongtavornpinyo W, Yeung S, Hastings IM, Dondorp AM, Day NPJ, White NJ (2008) Spread of anti-malarial drug resistance: mathematical model with implications for ACT drug policies. Malar J 7:229

    Article  Google Scholar 

  • Prosper OF, Ruktanoncha N, Martcheva M (2012) Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control. J Theor Biol 303:1–14

    Article  MathSciNet  Google Scholar 

  • Rodrguez DJ, Torres-Sorando L (2001) Models of infectious diseases in spatially heterogeneous environments. Bull Math Biol 63:547–571

    Article  MATH  Google Scholar 

  • Ross R (1911) The prevention of malaria. John Murray, London

    Google Scholar 

  • Salmani M, van den Driessche P (2006) A model for disease transmission in a patchy environment. Discret Contin Dyn Syst Ser B 6:185–202

    MathSciNet  MATH  Google Scholar 

  • Smith HL, Waltman P (1995) The theory of the chemostat. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Smith DL, Mckenzie EF (2004) Statics and dynamics of malaria infection in anopheles mosquito. Malar J 3:13

    Article  Google Scholar 

  • Smith DL, Dushoff J, Ellis Mckenzie F (2005) The risk of a mosquito-borne infection in a heterogeneous environnement. PLoS Biol 2:1957–1964

    Google Scholar 

  • Smith T, Killen GF, Maire N, Ross A, Molineaux L, Tediosi F, Hutton G, Utzinger J, Dietz K, Tanner M (2006) Mathematical modelling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: Overview. Am J Trop Med Hyg 75:1–10

    Google Scholar 

  • Snow RW, Omumbo J (2006) In: Jamison DT et al (eds) Malaria, in diseases and mortality in Sub-Saharan Africa. The World Bank, Washington

    Google Scholar 

  • US Census Bureau International database (2010)

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • World Health Organization (WHO) Malaria (2010) http://www.who.int/mediacentre/factsheets/fs094/en/

  • World Health Organization (WHO) World malaria report 2009

  • Zhou G, Minakawa N, Githeko AK, Yan G (2004) Association between climate variability and malaria epidemics in the east African highlands. Proc Natl Acad Sci USA 101:2375–2380

    Article  Google Scholar 

Download references

Acknowledgments

The author likes to thank the anonymous reviewers for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. B. Agusto.

Appendices

Appendix 1: Proof of Theorem 4

Proof

To prove Theorem 4, we follow the method given in Prosper et al. (2012). Assume \(\mathcal {R}^2_{0_{_{DR_1}}} >\mathcal {R}^2_{0_{_{DR_2}}}\), by this assumption and from Eq. (16) it follows that \(p_1k_4> p_2k_2\). Evaluating the reproduction number \(\mathcal {R}^2_{0_{_{DR}}}\) at the boundary of the domain \((\psi _{_{12}},\psi _{_{21}}) \in [0,\infty ) \times [0,\infty )\). We have,

$$\begin{aligned} \mathcal {R}^2_{0_{_{DR}}}(\psi _{_{12}}, 0) = \frac{1}{2k_2q_2}(p_1q_2 + p_2k_2 + |p_1q_2 - p_2k_2|) . \end{aligned}$$
(26)

Since by assumption \(p_1k_4 > p_2k_2\), and because \(q_2 = k_4 + \psi _{_{12}} \ge k_4\), we know that \(p_1q_2 - p_2k_2 > 0\), and so \(|p_1q_2 - p_2k_2| = p_1q_2 - p_2k_2\). Thus, Eq. (26) simplifies to \(\mathcal {R}^2_{0_{_{DR}}}(\psi _{_{12}}, 0) = \mathcal {R}^2_{0_{_{DR_1}}}(0,0)\) for all \(\psi _{_{12}} \in [0,\infty )\). Similarly,

$$\begin{aligned} \mathcal {R}^2_{0_{_{DR}}}(0, \psi _{_{21}})&= \frac{1}{2k_4q_1}(p_1k_4 + p_2q_1 + |p_1k_4 - p_2q_1|)\\&= \frac{1}{k_4q_1} \max \{p_1k_4, p_2q_1\} \\&= \max \bigg \{\frac{p_1}{q_1},\frac{p_2}{k_4}\bigg \}\\&= \max \bigg ( \frac{\mathcal {R}^2_{0_{_{DR_1}}}}{1 + \frac{\psi _{_{21}}}{k_2}},\mathcal {R}^2_{0_{_{DR_2}}}\bigg ). \end{aligned}$$

Hence, \(\mathcal {R}^2_{0_{_{DR_2}}}(0,0) \le \mathcal {R}^2_{0_{_{DR}}}(0, \psi _{_{21}}) \le \mathcal {R}^2_{0_{_{DR_1}}}(0,0)\), for all \(\psi _{_{21}} \in [0,\infty )\).

Now, evaluating the reproduction number \(\mathcal {R}^2_{0_{_{DR}}}\) in the interior of the domain \((\psi _{_{12}},\psi _{_{21}}) \in [0,\infty ) \times [0,\infty )\). Consider the function

$$\begin{aligned} f(x) = \sigma _2y^2 - (p_1q_2 + p_2q_1)y + p_1p_2. \end{aligned}$$
(27)

\(f\) is the characteristic polynomial of the next-generation matrix used to derive \(\mathcal {R}^2_{0_{_{DR}}}(\psi _{_{12}}, \psi _{_{21}})\) in Eq. (15). \(\mathcal {R}^2_{0_{_{DR}}}\) is the larger of the two roots of \(f(x)\). Consequently, \(f(\mathcal {R}^2_{0_{_{DR}}}) = 0\) and \(f^\prime (\mathcal {R}^2_{0_{_{DR}}}) > 0\). Thus, for any real number \(y\) for which the inequality \(f(y) < 0\) holds, implies that \(y<\mathcal {R}^2_{0_{_{DR}}}\). However, if \(f(y) > 0\) and \(f^\prime (y) > 0\), then \(y>\mathcal {R}^2_{0_{_{DR}}}\). Now, suppose \(\psi _{_{12}}\) and \(\psi _{_{21}}\) are positive, then it follows that

$$\begin{aligned} f\bigg (\mathcal {R}^2_{0_{_{DR_1}}}\bigg )&= f \bigg (\frac{p_1}{k_2}\bigg ) = \sigma _2 \bigg (\frac{p_1}{k_2}\bigg )^2 - (p_1q_2 + p_2q_1)\frac{p_1}{k_2} + p_1p_2\\&= \frac{p_1}{k_2} \bigg [(\psi _{_{21}}k_2 + \psi _{_{21}}k_4 + k_2k_4)\frac{p_1}{k_2} - (p_1q_2 + p_2q_1) + p_2k_2\bigg ]\\&= \frac{p_1}{k_2} \big [p_1\psi _{_{21}} + p_1 \frac{\psi _{_{21}}k_4}{k_2} + p_1k_4 - (p_1q_2 + p_2q_1) + p_2k_2\bigg ]\\&= \frac{p_1}{k_2} \bigg [p_1q_2 + p_1 \frac{\psi _{_{21}}k_4}{k_2} - (p_1q_2 + p_2q_1) + p_2k_2\bigg ]\\&= \frac{p_1}{k_2} \bigg (\frac{p_1k_4}{k_2} \psi _{_{21}} - p_2\psi _{_{21}}\bigg ) \\&= \frac{p_1\psi _{_{21}}}{k^2_2} (p_1k_4 - p_2k_2). \end{aligned}$$

We can similarly show that

$$\begin{aligned} f\bigg (\mathcal {R}^2_{0_{_{DR_2}}}\bigg )&= f \bigg (\frac{p_2}{k_4}\bigg ) = \frac{p_2\psi _{_{12}}}{k^4_2} (p_2k_2 - p_1k_4)\\ f\bigg (\frac{\mathcal {R}^2_{0_{_{DR_1}}}}{1 + \frac{\psi _{_{21}}}{k_2}}\bigg )&= -\bigg (\frac{p_1}{k_2+\psi _{_{21}}}\bigg )^2 \psi _{_{12}}\psi _{_{21}}. \end{aligned}$$

Thus, since \( (p_1k_4 - p_2k_2)>0\) by assumption, we have that \(f(\mathcal {R}^2_{0_{_{DR_1}}}) > 0\), \(f(\mathcal {R}^2_{0_{_{DR_2}}}) <0\) and \(f\bigg (\frac{\mathcal {R}^2_{0_{_{DR_1}}}}{1 + \frac{\psi _{_{21}}}{k_2}}\bigg )<0\).

Differentiating \(f(y)\) we have \(f^\prime (y) = 2\sigma _2y - (p_1q_2 + p_2q_1)\). Thus,

$$\begin{aligned} f^\prime \bigg (\mathcal {R}^2_{0_{_{DR_1}}}\bigg )&= f ^\prime \bigg (\frac{p_1}{k_2}\bigg ) = 2\sigma \bigg (\frac{p_1}{k_2}\bigg ) - (p_1q_2 + p_2q_1)\\&= 2(\psi _{_{21}}k_2 + \psi _{_{21}}k_4 + k_2k_4)\frac{p_1}{k_2} - p_1k_4 - p_1\psi _{_{12}} - p_2k_2 - p_2\psi _{_{21}}\\&= (p_1k_4 - p_2k_2) + \frac{(k_2\psi _{_{12}}+k_4\psi _{_{21}} )p_1}{k_2}+ \frac{(p_1k_4 - p_2k_2)\psi _{_{21}}}{k_2}. \end{aligned}$$

Since \((p_1k_4 - p_2k_2)>0\), it follows that \(f^\prime (\mathcal {R}^2_{0_{_{DR_1}}})>0\). Hence, it follows that, for \(\psi _{_{12}}\) and \(\psi _{_{21}}\) positive, \(f(\mathcal {R}^2_{0_{_{DR_2}}})<0\) and \(f\bigg (\frac{\mathcal {R}^2_{0_{_{DR_1}}}}{1 + \frac{\psi _{_{21}}}{k_2}}\bigg )<0\) implies that \(\mathcal {R}^2_{0_{_{DR}}} > \max \bigg \{\frac{\mathcal {R}^2_{0_{_{DR_1}}}}{1 + \frac{\psi _{_{21}}}{k_2}},\mathcal {R}^2_{0_{_{DR_2}}}\bigg \}.\) Since \(f(\mathcal {R}^2_{0_{_{DS_1}}})>0\) and \(f^\prime (\mathcal {R}^2_{0_{_{DS_1}}})>0\) we have that \(\mathcal {R}^2_{0_{_{DR}}}<\mathcal {R}^2_{0_{_{DS_1}}}\).

Hence, for all \(\psi _{_{12}}\) and \(\psi _{_{21}}\) positive, \(\max \bigg \{\frac{\mathcal {R}^2_{0_{_{DR_1}}}(0,0)}{1 + \frac{\psi _{_{21}}}{k_2}},\mathcal {R}^2_{0_{_{DS_2}}}(0,0)\bigg \} < \mathcal {R}^2_{0_{_{DS}}}(\psi _{_{12}},\psi _{_{21}})<\mathcal {R}^2_{0_{_{DR_1}}}(0,0).\) \(\square \)

Appendix 2: Proof of Theorem 6

Proof

In the proof of Theorem 4 we have that \(\mathcal {R}_{0_{_{DR}}}(0,\psi ) = \max \bigg \{\frac{\mathcal {R}_{0_{_{DR_1}}}(0,0)}{1 + \frac{\psi _{_{21}}}{k_2}},\mathcal {R}_{0_{_{DR_2}}}(0,0)\bigg \}\) and \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi ) >\max \bigg \{\frac{\mathcal {R}_{0_{_{DR_1}}}(0,0)}{1 + \frac{\psi _{_{21}}}{k_2}}, \mathcal {R}_{0_{_{DR_2}}}(0,0)\bigg \} \) for \(\psi _{_{12}} > 0\). Thus \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi )\ge \mathcal {R}_{0_{_{DR}}}(0,\psi )\) for all \( \psi _{_{12}}\ge 0\). Thus, for \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi )\) to be an increasing function in \(\psi _{_{12}}\) we need to show that \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi )\) is monotone in \(\psi _{_{12}}\).

Also, from Theorem 4 we also know that \(\mathcal {R}_{0_{_{DR}}}(\psi ,0) = \mathcal {R}_{0_{_{DR_1}}}(0,0,) \ge \mathcal {R}_{0_{_{DR}}}(\psi ,\psi _{_{21}})\) for all non-negative \(\psi _{_{21}}\). Again, we only need to show that \(\mathcal {R}_{0_{_{DR}}}(\psi ,\psi _{_{21}})\) is monotone in \(\psi _{_{21}}\) in order to show that it is a decreasing function in \(\psi _{_{12}}\).

To show that \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi _{_{21}})\) is monotone, we first show that \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi )\) is monotone in \(\psi _{_{12}}\). Since \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi )\) is continuous in \(\psi _{_{12}}\), it is monotone with respect to \(\psi _{_{12}}\) if for every \(B \in (0,\infty )\) such that \(\mathcal {R}_{0_{_{DR}}}(\psi _{{12}},\psi ) = B\) has a non-negative solution \(\psi _{{12}} \in [0,\infty )\), then this solution is unique. Suppose \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi ) = B\). The reproduction number \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi )\) can be written as

$$\begin{aligned} \frac{1}{2\sigma _2} \bigg (s +\sqrt{s^2 - 4p_1p_2\sigma _2}\bigg ), \end{aligned}$$

where \(s = p_1q_2 + p_2q_1 = p_1(k_4 + \psi _{_{12}}) + p_2(k_2 + \psi )\) and \(\sigma _2 = k_2k_2 + k_2\psi _{_{12}} + \tau _2\psi .\)

Hence,

$$\begin{aligned} \frac{1}{2\sigma _2} \bigg (s +\sqrt{s^2 - 4p_1p_2\sigma _2}\bigg ) = B, \end{aligned}$$
(28)

Equation (28) implies that

$$\begin{aligned} \sigma _2B^2 - sB + p_1p_2 = 0. \end{aligned}$$
(29)

Note that both \(\sigma _2\) and \(s\) are linear in \(\psi _{_{12}}\). Thus, Eq. (29) is linear in \(\psi _{_{12}}\), implying that if there exists a \(\psi _{_{12}} \in [0,\infty )\) that is, a solution to Eq. (29), then this solution is unique. Hence, \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi )\) is monotone for each \(\psi \in [0,\infty )\). By the same argument, \(\mathcal {R}_{0_{_{DR}}}(\psi ,\psi _{_{21}})\) is monotone for each \(\psi \in [0,\infty ))\). Since \(\mathcal {R}_{0_{_{DR}}}(\psi _{_{12}},\psi )\) is monotone for non-negative \(\psi _{_{12}}\) and \(\mathcal {R}_{0_{_{DR}}}(0,\psi ) \le \mathcal {R}_{0_{_{DR}}}(\psi _{{12}},\psi )\), for each fixed \(\psi _{_{21}} = \psi \in [0,\infty )\), \(\mathcal {R}_{0_{_{DR}}}(\psi _{{12}},\psi _{{21}})\) is an increasing function of \(\psi _{{12}}\). Likewise, since \(\mathcal {R}_{0_{_{DR}}}(\psi ,0) \ge \mathcal {R}_{0_{_{DR}}}(\psi ,\psi _{{21}})\) for non-negative \(\psi _{_{21}}\), for each fixed \(\psi _{{12}} = \psi \in [0,\infty )\), \(\mathcal {R}_{0_{_{DS}}}(\psi _{{12}},\psi _{{21}})\) is a decreasing function of \(\psi _{{21}}\). \(\square \)

Appendix 3: Proof of Theorem 8

Proof

The stability of the drug sensitive-only boundary equilibrium is explored by evaluating the Jacobian of system (19) at the boundary equilibrium \({\mathcal E}_{1S}\), taking the following order of the coordinates \(I_1,I_{v1},J_1,J_{v1}\).

The Jacobian is given as

$$\begin{aligned} J_S({{\mathcal E}_{1S}})= \begin{pmatrix} J_{S_{1}} &{}\quad \! J_{S_{2}} \\ \\ 0 &{}\quad \! J_{S_{4}} \end{pmatrix} \end{aligned}$$

where

$$\begin{aligned} J_{S_{1}} = \begin{pmatrix} \displaystyle -\frac{\alpha _{h1}\beta _{h1}I^{**}_{v1}}{N^{**}_{h1}}-k_1 &{}\quad \! \displaystyle \frac{\alpha _{h1}\beta _{h1}(N^{**}_{h1}-I^{**}_1)}{N^{**}_{h1}} \\ \\ \displaystyle \frac{\alpha _{v1}\beta _{v1}(N^{**}_{v1}-I^{**}_{v1})}{N^{**}_{h1}} &{}\quad \! \displaystyle -\frac{\alpha _{v1}\beta _{v1}I^{**}_1}{N^{**}_{h1}}-\mu _v \\ \\ \end{pmatrix}, \end{aligned}$$
$$\begin{aligned} J_{S_{2}} = \begin{pmatrix} \displaystyle -\frac{\alpha _{h1}\beta _{h1}I^{**}_{v1}}{N^{**}_{h1}} &{} \displaystyle 0 \\ \\ \displaystyle 0 &{} \displaystyle -\frac{\alpha _{v1}\beta _{v1}I^{**}_1}{N^{**}_{h1}} \\ \\ \end{pmatrix} \end{aligned}$$
$$\begin{aligned} J_{S_{4}} = \begin{pmatrix} \displaystyle -k_2 &{}\quad \! \displaystyle \frac{\theta _{h1}\alpha _{h1}(N^{**}_{h1}-I^{**}_1)}{N^{**}_{h1}} \\ \\ \displaystyle \frac{\theta _{v1}\alpha _{v1}(N^{**}_{v1}-I^{**}_{v1})}{N^{**}_{h1}} &{}\quad \! \displaystyle -\mu _v \\ \\ \end{pmatrix}. \end{aligned}$$

The eigenvalues of \(\displaystyle J_S({{\mathcal E}_{1S}})\) are given by the eigenvalues of \(J_{S_{1}} \) and \(J_{S_{4}} \). The eigenvalues of \(J_{S_{1}} \) are determined from the roots of the characteristics equations obtained by substituting in \(J_{S_{1}}\), \(I^{**}_1,~I^{**}_{v1}\)

$$\begin{aligned} P_{S_{11}}&= \lambda ^2 + \bigg [ \frac{N^{**}_{v1}(\alpha _{v1}\beta _{v1}+\mu _v)\beta _{h1}\alpha _{h1}}{N^{**}_{v1}\alpha _{h1}\beta _{h1}+k_1N^{**}_{h1}} +\,\frac{\alpha _{v1}\beta _{v1}(N^{**}_{v1}\alpha _{h1}\beta _{h1}+k_1N^{**}_{h1})}{(\alpha _{v1}\beta _{v1}+\mu _v)N^{**}_{h1}}\bigg ] \lambda \nonumber \\&+\, \mu _vk_1(\mathcal {R}^2_{0_{_{DS_1}}}-1) =0. \end{aligned}$$
(30)

It follows that for \(\mathcal {R}^2_{0_{_{DS_1}}} > 1\), the coefficients of the characteristics equation \(P_{S_{11}} \) is positive. And thus, satisfies the Routh–Hurwitz criteria, for stability.

For the matrix \(J_{S_{4}}\), the eigenvalues are given by the roots of the characteristics equations obtained by substituting in \(J_{S_{4},}\) \(I^{**}_1,~I^{**}_{v1}\)

$$\begin{aligned} P_{S_{41}} = \lambda ^2 + (\mu _v+k_2)\lambda + \mu _v k_2 \bigg (1 -\frac{\mathcal {R}^2_{0_{_{DR_1}}}}{\mathcal {R}^2_{0_{_{DS_1}}}}\bigg ) =0. \end{aligned}$$
(31)

The roots of the characteristics equation \(P_{S_{41}}\) have negative real parts if and only if \(\mathcal {R}^2_{0_{_{DS_1}}} > \mathcal {R}^2_{0_{_{DR_1}}}\). \(\square \)

Appendix 4: Proof of Theorem 9

Proof

The stability of the drug resistance-only boundary equilibrium is explored by evaluating the Jacobian of system (20) at the boundary equilibrium \({\mathcal E}_{1R}\), using the following order of coordinates, \(I_1,I_{v1},\) \(J_1,J_{v1}\).

The Jacobian is given as

$$\begin{aligned} J_R({{\mathcal E}_{1R}})= \begin{pmatrix} J_{R_{1}} &{}\quad \! 0\\ \\ J_{R_{3}} &{}\quad \! J_{R_{4}} \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} J_{R_{1}} = \begin{pmatrix} \displaystyle -k_1 &{} \displaystyle \frac{ \alpha _{h1}\beta _{h1}(N^{**}_{h1}-J^{**}_1)}{N^{**}_{h1}} \\ \\ \displaystyle \frac{ \alpha _{v1}\beta _{v1}(N_{v1}^{**}-J^{**}_{v1})}{N^{**}_{h1}} &{} \displaystyle -\mu _v \\ \\ \end{pmatrix}, \end{aligned}$$
$$\begin{aligned} J_{R_{3}} = \begin{pmatrix} \displaystyle -\frac{\theta _{h1}\alpha _{h1}J^{**}_{v1}}{N^{**}_{h1}} &{} \displaystyle 0 \\ \\ \displaystyle 0 &{} \displaystyle -\frac{\theta _{v1}\alpha _{v1}J^{**}_1}{N^{**}_{h1}} \\ \\ \end{pmatrix}. \end{aligned}$$

and

$$\begin{aligned} J_{R_{4}} = \begin{pmatrix} \displaystyle -\frac{\theta _{h1}\alpha _{h1}J^{**}_{v1}}{N^{**}_{h1}}-k_2 &{} \displaystyle \frac{\theta _{h1}\alpha _{h1}(N^{**}_{h1}-J^{**}_1)}{N^{**}_{h1}} \\ \\ \displaystyle \frac{\theta _{v1}\alpha _{v1}(N^{**}_{v1}-J^{**}_{v1})}{N^{**}_{h1}} &{} \displaystyle -\frac{\theta _{v1}\alpha _{v1}J^{**}_1}{N^{**}_{h1}}-\mu _v \\ \\ \end{pmatrix}. \end{aligned}$$

substituting \(J^{**}_1\) and \(J^{**}_{v1}\) into \(J_{R_{1}}\) and \(J_{R_{4}}\) gives the following characteristics equations,

$$\begin{aligned} P_{R_{11}} = \lambda ^2 + (\mu _v+k_1)\lambda + \mu _v k_1 \bigg (1 -\frac{\mathcal {R}^2_{0_{_{DS_1}}}}{\mathcal {R}^2_{0_{_{DR_1}}}}\bigg ) =0. \end{aligned}$$
(32)

and

$$\begin{aligned} P_{R_{41}}&= \lambda ^2 + \bigg [ \frac{N^{**}_{v1}(\theta _{v1}\alpha _{v1}+\mu _v)\theta _{h1}\alpha _{h1}}{N^{**}_{v1}\theta _{h1}\alpha _{h1}+k_2N^{**}_{h1}} +\frac{\theta _{v1}\alpha _{v1}(N^{**}_{v1}\theta _{h1}\alpha _{h1}+k_2N^{**}_{h1})}{(\theta _{v1}\alpha _{v1}+\mu _v)N^{**}_{h1}}\bigg ] \lambda \nonumber \\&\quad +\,\mu _vk_1(\mathcal {R}^2_{0_{_{DR_1}}}-1) =0. \end{aligned}$$
(33)

By Routh–Hurwitz criteria for stability, it follows that the roots of the characteristics equations \(P_{R_{1}}\) and \(P_{R_{4}}\) have negative real parts if and only if \(\mathcal {R}^2_{0_{_{DR_1}}} > \mathcal {R}^2_{0_{_{DS_1}}}\). \(\square \)

Appendix 5: Proof of Theorem 10

Proof

To prove Theorem 10, we follow the method given in Esteva and Gumel (2009) and Esteva and Vargas (2000). The method essentially entails proving that the linearization of the model system (14), around the co-existence equilibrium \({\mathcal E}_{1}\), has no solutions of the form

$$\begin{aligned} \tilde{Z}(t) = \tilde{Z}_0e^{\omega t}, \end{aligned}$$
(34)

with \(\tilde{Z}= \{Z_1, Z_2, Z_3, Z_4\}, ~~Z_i \in C, \omega \in C\), and Re \(\omega \ge 0\) (the implication of this is that the eigenvalues of the characteristic polynomial associated with the linearized model will have negative real part; in which case, the equilibrium \({\mathcal E}_{1}\) is LAS).

Let \(I^{**}_1,J^{**}_1,I^{**}_{v1},J^{**}_{v1}\) denote the coordinates of the co-existence equilibrium, \({\mathcal E}_{1}\). Substituting a solution of the form (34) into the linearized system of (17) around \({\mathcal E}_{1}\) gives the following system of linear equations

$$\begin{aligned} \begin{array}{lll} \displaystyle \omega Z_1 &{}=&{} \displaystyle -\bigg (\frac{\alpha _{h1}\beta _{h1}I^{**}_{v1}}{N^{**}_{h1}}+p_1\bigg ) Z_1 - \frac{\alpha _{h1}\beta _{h1}I^{**}_{v1}}{N^{**}_{h1}} Z_2 + \frac{\alpha _{h1}\beta _{h1}}{N^{**}_{h1}} (N^{**}_{h1}-I^{**}_1-J^{**}_1)Z_3\\ \\ \displaystyle \omega Z_2 &{}\!=\!&{} \displaystyle \!-\! \frac{\alpha _{h1}\theta _{h1}J^{**}_{v1}}{N^{**}_{h1}} Z_1 \!+\! \xi _1 Z_1 \! -\!\bigg ( \frac{\alpha _{h1}\theta _{h1}J^{**}_{v1}}{N^{**}_{h2}} \!+\!p_2\bigg )Z_2 \!+\! \frac{\alpha _{h1}\theta _{h1}}{N^{**}_{h1}} (N^{**}_{h1}-I^{**}_1\!-\!J^{**}_1)Z_4 \\ \\ \displaystyle \omega Z_3 &{}=&{} \displaystyle \frac{\alpha _{v1}\beta _{v1}}{N^{**}_{h1}} (N^{**}_{v1}-I^{**}_{v1}-J^{**}_{v1})Z_1 -\bigg (\frac{\alpha _{v1}\beta _{v1}I^{**}_1}{N^{**}_{h1}} + \mu _v \bigg )Z_3 - \frac{\alpha _{v1}\beta _{v1}I^{**}_1}{N^{**}_{h1}} Z_4 \\ \\ \displaystyle \omega Z_4 &{}=&{} \displaystyle \frac{\alpha _{v1}\theta _{v1}}{N^{**}_{h1}} (N^{**}_{v1}-I^{**}_{v1}-J^{**}_{v1})Z_2 - \frac{\alpha _{v1}\theta _{v1}J^{**}_1}{N^{**}_{h1}} Z_3 -\bigg (\frac{\alpha _{v1}\theta _{v1}J^{**}_1}{N^{**}_{h1}}+ \mu _v\bigg )Z_4, \end{array} \end{aligned}$$
(35)

where \( p_1=\gamma _1 + \xi _1+\mu _h + \delta _{I_1}, ~p_2=\tau _1 + \mu _h + \delta _{J_1}\). Simplifying (35), gives the equivalent system

$$\begin{aligned} \displaystyle \bigg [ 1 + \frac{1}{p_1}\bigg (\omega +\frac{\alpha _{h1}\beta _{h1}I^{**}_{v1}}{N^{**}_{h1}}\bigg )\bigg ] Z_1&= \displaystyle \!-\! \frac{\alpha _{h1}\beta _{h1}I^{**}_{v1}}{p_1N^{**}_{h1}} Z_2 \!+\! \frac{\alpha _{h1}\beta _{h1}}{p_1N^{**}_{h1}} (N^{**}_{h1}\!-\!I^{**}_1\!-\!J^{**}_1)Z_3 \end{aligned}$$
(36)
$$\begin{aligned} \displaystyle \bigg [ 1 + \frac{1}{ p_2}\bigg (\omega +\!\frac{\alpha _{h1}\theta _{h1}J^{**}_{v1}}{N^{**}_{h1}}\bigg )\bigg ]Z_2 \!&= \! \displaystyle \!-\! \frac{\alpha _{h1}\theta _{h1}J^{**}_{v1}}{p_2N^{**}_{h1}} Z_1 \!+\! \frac{\xi _1 Z_1}{p_2} \!+\! \frac{\alpha _{h1}\theta _{h1}}{p_2N^{**}_{h1}} (N^{**}_{h1}-I^{**}_1\!-\!J^{**}_1)Z_4 \end{aligned}$$
(37)
$$\begin{aligned} \displaystyle \bigg [ 1 + \frac{1}{ \mu _v}\bigg (\omega + \frac{\alpha _{v1}\beta _{v1}I^{**}_1}{N^{**}_{h1}} \bigg )\bigg ]Z_3&= \displaystyle \frac{\alpha _{v1}\beta _{v1}}{\mu _vN^{**}_{h1}} (N^{**}_{v1}-I^{**}_{v1}-J^{**}_{v1})Z_1 - \frac{\alpha _{v1}\beta _{v1}I^{**}_1}{\mu _vN^{**}_{h1}} Z_4 \end{aligned}$$
(38)
$$\begin{aligned} \displaystyle \bigg [ 1 + \frac{1}{\mu _v}\bigg ( \omega + \frac{\alpha _{v1}\theta _{v1}J^{**}_1}{N^{**}_{h1}}\bigg )\bigg ]Z_4&= \displaystyle \frac{\alpha _{v1}\theta _{v1}}{\mu _vN^{**}_{h1}} (N^{**}_{v1}-I^{**}_{v1}-J^{**}_{v1})Z_2 - \frac{\alpha _{v1}\theta _{v1}J^{**}_1}{\mu _vN^{**}_{h1}} Z_3 \end{aligned}$$
(39)

Adding Eqs. (36) and (37), (38) and (39) gives the system

$$\begin{aligned} \begin{array}{lll} (1+G_1(\omega ))Z_1 + [1+G_2(\omega )]Z_2 &{}=&{} (H\tilde{Z})_1 + (H\tilde{Z})_2\\ (1+G_3(\omega ))Z_3 + [1+G_4(\omega )]Z_4 &{}=&{} (H\tilde{Z})_3 + (H\tilde{Z})_4\\ \end{array} \end{aligned}$$
(40)

where

$$\begin{aligned} \begin{array}{lll} \displaystyle G_1(\omega ) &{}=&{} \displaystyle \bigg [ 1 + \frac{1}{p_1}\bigg (\omega +\frac{\alpha _{h1}\beta _{h1}I^{**}_{v1}}{N^{**}_{h1}} + \frac{p_1\alpha _{h1}\theta _{h1}J^{**}_{v1}}{N^{**}_{h1}} \bigg )\bigg ] Z_1 \\ \\ \displaystyle G_2(\omega ) &{}=&{} \displaystyle \bigg [ 1 + \frac{1}{ p_2}\bigg (\omega +\frac{\alpha _{h1}\theta _{h1}J^{**}_{v1}}{N^{**}_{h1}} + \frac{p_2\alpha _{h1}\beta _{h1}I^{**}_{v1}}{N^{**}_{h1}} \bigg )\bigg ]Z_2 \\ \\ \displaystyle G_3(\omega ) &{}=&{} \displaystyle \bigg [ 1 + \frac{1}{ \mu _v}\bigg (\omega + \frac{\alpha _{v1}\beta _{v1}I^{**}_1}{N^{**}_{h1}} + \frac{\alpha _{v1}\theta _{v1}J^{**}_1}{N^{**}_{h1}} \bigg )\bigg ]Z_3 \\ \\ \displaystyle G_4(\omega ) &{}=&{} \displaystyle \bigg [ 1 + \frac{1}{\mu _v}\bigg ( \omega + \frac{\alpha _{v1}\theta _{v1}J^{**}_1}{N^{**}_{h1}} + \frac{\alpha _{v1}\beta _{v1}I^{**}_1}{N^{**}_{h1}} \bigg )\bigg ]Z_4 \\ \end{array} \end{aligned}$$

and

$$\begin{aligned} H = \begin{pmatrix} \displaystyle 0 &{} 0&{} \displaystyle \frac{\alpha _{h1}\beta _{h1} S^{**}_1}{p_1N^{**}_{h1}} &{}0&{} \\ \\ \displaystyle \frac{\xi _1}{p_2}&{} 0 &{} 0&{} \displaystyle \frac{\alpha _{h1}\theta _{h1}S^{**}_{1}}{p_2N^{**}_{h1}} \\ \\ \displaystyle \frac{\alpha _{v1}\beta _{v1}S^{**}_{v1}}{\mu _vN^{**}_{h1}} &{} 0&{} 0 &{} 0\\ \\ 0&{} \displaystyle \frac{\alpha _{v1}\theta _{v1}S^{**}_{v1}}{\mu _vN^{**}_{h1}} &{} 0 &{} 0 \\ \\ \end{pmatrix}. \end{aligned}$$

Note that \(S^{**}_1 = (N^{**}_{h1}-I^{**}_{1}-J^{**}_{1}),~~S^{**}_{v1} = (N^{**}_{v1}-I^{**}_{v1}-J^{**}_{v1})\) above. It should further be noted that the matrix \(H\) has non-negative entries, and the equilibrium \( {\mathcal E}_{1} = (I^{**}_1,J^{**}_1,I^{**}_{v1},J^{**}_{v1})\) satisfies \( {\mathcal E}_{1} = H {\mathcal E}_{1}\). Furthermore, since the coordinates of \( {\mathcal E}_{1}\) are all positive, it follows then that if \(\tilde{Z}\) is a solution of (34), then it is possible to find a minimal positive real number \(r\) such that

$$\begin{aligned} \left| \tilde{Z}\right| \le r {\mathcal E}_{1}. \end{aligned}$$
(41)

Observe that \(r\) is also the minimal positive \(r\) such that \(|Z_1|+|Z_2| \le r(I^{**}_1+J^{**}_1)\) and \(|Z_3|+|Z_4| \le r(I^{**}_{v1}+J^{**}_{v1})\). We want to show that Re \(\omega < 0\). Assume the contrary (i.e., Re \(\omega \ge 0\)), we consider two cases: \(\omega = 0\) and \(\omega \ne 0\). Assume the first case \(\omega = 0\). Then, (35) is a homogeneous linear system in the variables \(Z_i ~(i = 1,\ldots ,4)\). The determinant of this system corresponds to that of the Jacobian of system (17) evaluated at \(\mathcal {E}_{1}\), which is given by

$$\begin{aligned} \Delta&= \displaystyle \bigg (p_2\mu _v-\frac{\theta _{h1}\alpha _{h1}S^{**}_1}{N^{**}_{h1}}\frac{\theta _{v1}\alpha _{v1}S^{**}_{v1}}{N^{**}_{h1}}\bigg ) \bigg (p_1\mu _v-\frac{\alpha _{v1}\beta _{v1}S^{**}_{v1}}{N^{**}_{h1}}\frac{\alpha _{h1}\beta _{h1}S^{**}_1}{N^{**}_{h1}}\bigg )> 0. \end{aligned}$$

Consequently, the system (35) can only have the trivial solution \(\tilde{Z} = \bar{0}\).

The case \(\omega \ne 0\), is considered next. In this case, Re \(G_i(\omega )\ge 0,~~i=1,\ldots ,4\), since, by assumption, Re \(\omega >0\). It is easy to see that this implies \(|1+G(\omega )| > 1\) for all \(i\). Now, define \(G(\omega ) = \min |1+G_i(\omega )|, ~~i = 1,\ldots , 4\). Then, \(G(\omega ) > 1\), and therefore \(\frac{r}{G(\omega )} < r\). The minimality of \(r\) implies that \(|\tilde{Z}| > \frac{r}{G(\omega )} \mathcal {E}_{1}\). But, on the other hand, taking norms on both sides of the second equation of (40), and using the fact that \(H\) is non-negative, we obtain

$$\begin{aligned} G(\omega )|Z|\le H |Z| \le r\mathcal {E}_{1}. \end{aligned}$$
(42)

Then, it follows from the above inequality that \(|Z|\le \frac{r}{G(\omega )} \mathcal {E}_{1}\) which is a contradiction. Hence, Re \(\omega < 0\), which implies that \(\mathcal {E}_{1}\) is locally asymptotically stable. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agusto, F.B. Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity. Bull Math Biol 76, 1607–1641 (2014). https://doi.org/10.1007/s11538-014-9970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9970-6

Keywords

Mathematics Subject Classifications

Navigation