Skip to main content
Log in

Fold-Change Detection in a Whole-Pathway Model of Escherichia coli chemotaxis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

There has been recent interest in sensory systems that are able to display a response which is proportional to a fold change in stimulus concentration, a feature referred to as fold-change detection (FCD). Here, we demonstrate FCD in a recent whole-pathway mathematical model of Escherichia coli chemotaxis. FCD is shown to hold for each protein in the signalling cascade and to be robust to kinetic rate and protein concentration variation. Using a sensitivity analysis, we find that only variations in the number of receptors within a signalling team lead to the model not exhibiting FCD. We also discuss the ability of a cell with multiple receptor types to display FCD and explain how a particular receptor configuration may be used to elucidate the two experimentally determined regimes of FCD behaviour. All findings are discussed in respect of the experimental literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baker M, Wolanin P, Stock J (2006) Signal transduction in bacterial chemotaxis. Bioessays 28(1):9–22

  • Barnakov A, Barnakova L, Hazelbauer G (1999) Efficient adaptational demethylation of chemoreceptors requires the same enzyme-docking site as efficient methylation. Proc Natl Acad Sci USA 96(19):10667

    Article  Google Scholar 

  • Bray D (2013) Bray research group data website. http://www.pdn.cam.ac.uk/groups/comp-cell/Data.html. Accessed 11 Feb 2013

  • Bren A, Welch M, Blat Y, Eisenbach M (1996) Signal termination in bacterial chemotaxis: chez mediates dephosphorylation of free rather than switch-bound chey. Proc Natl Acad Sci USA 93(19):10090

    Article  Google Scholar 

  • Clausznitzer D, Oleksiuk O, Løvdok L, Sourjik V, Endres R (2010) Chemotactic response and adaptation dynamics in Escherichia coli. PLoS Comput Biol 6(5):e1000784

  • Dunten P, Koshland D Jr (1991) Tuning the responsiveness of a sensory receptor via covalent modification. J Biol Chem 266(3):1491–1496

    Google Scholar 

  • Endres R, Wingreen N (2006) Precise adaptation in bacterial chemotaxis through “assistance neighborhoods”. Proc Natl Acad Sci USA 103(35):13040–13044

    Article  Google Scholar 

  • Endres R, Falke J, Wingreen N (2007) Chemotaxis receptor complexes: from signaling to assembly. PLoS Comput Biol 3(7):e150

    Article  MathSciNet  Google Scholar 

  • Endres R, Oleksiuk O, Hansen C, Meir Y, Sourjik V, Wingreen N (2008) Variable sizes of Escherichia coli chemoreceptor signaling teams. Mol Syst Biol 4(1):211

    Google Scholar 

  • Grebe T, Stock J (1998) Bacterial chemotaxis: the five sensors of a bacterium. Curr Biol 8(5):R154–R157

    Article  Google Scholar 

  • Hansen C, Endres R, Wingreen N (2008) Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput Biol 4(1):e1

    Article  MathSciNet  Google Scholar 

  • Hansen C, Sourjik V, Wingreen N (2010) A dynamic-signaling-team model for chemotaxis receptors in Escherichia coli. Proc Natl Acad Sci USA 107(40):17170–17175

    Article  Google Scholar 

  • Jiang L, Ouyang Q, Tu Y (2010) Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLoS Comput Biol 6(4):e1000735

    Article  MathSciNet  Google Scholar 

  • Kalinin Y, Jiang L, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J 96(6):2439–2448

    Article  Google Scholar 

  • Keymer J, Endres R, Skoge M, Meir Y, Wingreen N (2006) Chemosensing in Escherichia coli: two regimes of two-state receptors. Proc Natl Acad Sci USA 103(6):1786–1791

    Article  Google Scholar 

  • Lazova M, Ahmed T, Bellomo D, Stocker R, Shimizu T (2011) Response rescaling in bacterial chemotaxis. Proc Natl Acad Sci USA 108(33):13870–13875

    Article  Google Scholar 

  • Li G, Weis R (2000) Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100(3):357–365

    Article  Google Scholar 

  • Li M, Hazelbauer G (2005) Adaptational assistance in clusters of bacterial chemoreceptors. Mol Microbiol 56(6):1617–1626

    Article  Google Scholar 

  • Lipkow K (2006) Changing cellular location of chez predicted by molecular simulations. PLoS Comput Biol 2(4):e39

    Article  Google Scholar 

  • Lipkow K, Andrews S, Bray D (2005) Simulated diffusion of phosphorylated chey through the cytoplasm of Escherichia coli. J Bacteriol 187(1):45–53

    Article  Google Scholar 

  • Meir Y, Jakovljevic V, Oleksiuk O, Sourjik V, Wingreen N (2010) Precision and kinetics of adaptation in bacterial chemotaxis. Biophys J 99(9):2766–2774

    Article  Google Scholar 

  • Mello B, Tu Y (2007) Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis. Biophys J 92(7):2329–2337

    Article  Google Scholar 

  • Mesibov R, Ordal G, Adler J (1973) The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. J Gen Physiol 62(2):203–223

    Article  Google Scholar 

  • Monod J, Wyman J, Changeux J (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12(7):88–118

    Article  Google Scholar 

  • Morton-Firth C, Shimizu T, Bray D (1999) A free-energy-based stochastic simulation of the tar receptor complex. J Mol Biol 286(4):1059–1074

    Article  Google Scholar 

  • Shimizu T, Aksenov S, Bray D (2003) A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J Mol Biol 329(2):291–309

    Article  Google Scholar 

  • Shimizu TS, Tu Y, Berg HC (2010) A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol Syst Biol 6(1):382

    Google Scholar 

  • Shoval O, Goentoro L, Hart Y, Mayo A, Sontag E, Alon U (2010) Fold-change detection and scalar symmetry of sensory input fields. Proc Natl Acad Sci USA 107(36):15995–16000

    Article  Google Scholar 

  • Shoval O, Alon U, Sontag E (2011) Symmetry invariance for adapting biological systems. SIAM J Appl Dyn Syst 10:857

    Article  MathSciNet  MATH  Google Scholar 

  • Sourjik V, Berg H (2004) Functional interactions between receptors in bacterial chemotaxis. Nature 428(6981):437–441

    Article  Google Scholar 

  • Springer W, Koshland D (1977) Identification of a protein methyltransferase as the cher gene product in the bacterial sensing system. Proc Natl Acad Sci USA 74(2):533

    Article  Google Scholar 

  • Stock J, Koshland D (1978) A protein methylesterase involved in bacterial sensing. Proc Natl Acad Sci USA 75(8):3659

    Article  Google Scholar 

  • Tindall M, Porter S, Maini P, Gaglia G, Armitage J (2008) Overview of mathematical approaches used to model bacterial chemotaxis i: the single cell. Bull. Math. Biol. 70(6):1525–1569

    Article  MathSciNet  MATH  Google Scholar 

  • Tindall MJ, Gaffney EA, Maini PK, Armitage JP (2012) Theoretical insights into bacterial chemotaxis. Wiley Interdiscip Rev Syst Biol Med 4(3):247–259. doi:10.1002/wsbm.1168

    Article  Google Scholar 

  • Tu Y, Shimizu T, Berg H (2008) Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc Natl Acad Sci USA 105(39):14855

    Article  Google Scholar 

  • Vaknin A, Berg H (2007) Physical responses of bacterial chemoreceptors. J Mol Biol 366(5):1416–1423

    Article  Google Scholar 

  • Wadhams G, Armitage J (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037

    Article  Google Scholar 

  • Welch M, Oosawa K, Aizawa S, Eisenbach M (1993) Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci USA 90(19):8787

    Article  Google Scholar 

Download references

Acknowledgments

MPE was supported by an Engineering and Physical Sciences Research Council Studentship, UK, and MJT by a Research Council UK Fellowship during the period in which this research was undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus J. Tindall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edgington, M.P., Tindall, M.J. Fold-Change Detection in a Whole-Pathway Model of Escherichia coli chemotaxis. Bull Math Biol 76, 1376–1395 (2014). https://doi.org/10.1007/s11538-014-9965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9965-3

Keywords

Navigation